kyutai/stt-rs/src/main.rs

185 lines
6.2 KiB
Rust
Raw Normal View History

2025-06-18 06:32:17 +00:00
// Copyright (c) Kyutai, all rights reserved.
// This source code is licensed under the license found in the
// LICENSE file in the root directory of this source tree.
use anyhow::Result;
use candle::{Device, Tensor};
use clap::Parser;
#[derive(Debug, Parser)]
struct Args {
/// The audio input file, in wav/mp3/ogg/... format.
in_file: String,
/// The repo where to get the model from.
#[arg(long, default_value = "kyutai/stt-1b-en_fr-candle")]
hf_repo: String,
/// Run the model on cpu.
#[arg(long)]
cpu: bool,
}
fn device(cpu: bool) -> Result<Device> {
if cpu {
Ok(Device::Cpu)
} else if candle::utils::cuda_is_available() {
Ok(Device::new_cuda(0)?)
} else if candle::utils::metal_is_available() {
Ok(Device::new_metal(0)?)
} else {
Ok(Device::Cpu)
}
}
#[derive(Debug, serde::Deserialize)]
struct Config {
mimi_name: String,
tokenizer_name: String,
card: usize,
text_card: usize,
dim: usize,
n_q: usize,
context: usize,
max_period: f64,
num_heads: usize,
num_layers: usize,
causal: bool,
}
impl Config {
fn model_config(&self) -> moshi::lm::Config {
let lm_cfg = moshi::transformer::Config {
d_model: self.dim,
num_heads: self.num_heads,
num_layers: self.num_layers,
dim_feedforward: self.dim * 4,
causal: self.causal,
norm_first: true,
bias_ff: false,
bias_attn: false,
layer_scale: None,
context: self.context,
max_period: self.max_period as usize,
use_conv_block: false,
use_conv_bias: true,
cross_attention: None,
gating: Some(candle_nn::Activation::Silu),
norm: moshi::NormType::RmsNorm,
positional_embedding: moshi::transformer::PositionalEmbedding::Rope,
conv_layout: false,
conv_kernel_size: 3,
kv_repeat: 1,
max_seq_len: 4096 * 4,
shared_cross_attn: false,
};
moshi::lm::Config {
transformer: lm_cfg,
depformer: None,
audio_vocab_size: self.card + 1,
text_in_vocab_size: self.text_card + 1,
text_out_vocab_size: self.text_card,
audio_codebooks: self.n_q,
conditioners: Default::default(),
extra_heads: None,
}
}
}
struct Model {
state: moshi::asr::State,
text_tokenizer: sentencepiece::SentencePieceProcessor,
dev: Device,
}
impl Model {
fn load_from_hf(hf_repo: &str, dev: &Device) -> Result<Self> {
let dtype = dev.bf16_default_to_f32();
// Retrieve the model files from the Hugging Face Hub
let api = hf_hub::api::sync::Api::new()?;
let repo = api.model(hf_repo.to_string());
let config_file = repo.get("config.json")?;
let config: Config = serde_json::from_str(&std::fs::read_to_string(&config_file)?)?;
let tokenizer_file = repo.get(&config.tokenizer_name)?;
let model_file = repo.get("model.safetensors")?;
let mimi_file = repo.get(&config.mimi_name)?;
let text_tokenizer = sentencepiece::SentencePieceProcessor::open(&tokenizer_file)?;
let vb_lm =
unsafe { candle_nn::VarBuilder::from_mmaped_safetensors(&[&model_file], dtype, dev)? };
let audio_tokenizer = moshi::mimi::load(mimi_file.to_str().unwrap(), Some(32), dev)?;
let lm = moshi::lm::LmModel::new(
&config.model_config(),
moshi::nn::MaybeQuantizedVarBuilder::Real(vb_lm),
)?;
let state = moshi::asr::State::new(1, 0, 0., audio_tokenizer, lm)?;
Ok(Model {
state,
text_tokenizer,
dev: dev.clone(),
})
}
fn run(&mut self, pcm: &[f32]) -> Result<()> {
use std::io::Write;
for pcm in pcm.chunks(1920) {
let pcm = Tensor::new(pcm, &self.dev)?.reshape((1, 1, ()))?;
let asr_msgs = self.state.step_pcm(pcm, None, &().into(), |_, _, _| ())?;
let mut prev_text_token = 0;
for asr_msg in asr_msgs.iter() {
match asr_msg {
moshi::asr::AsrMsg::Step { .. } | moshi::asr::AsrMsg::EndWord { .. } => {}
moshi::asr::AsrMsg::Word { tokens, .. } => {
for &text_token in tokens.iter() {
let s = {
let prev_ids =
self.text_tokenizer.decode_piece_ids(&[prev_text_token]);
let ids = self
.text_tokenizer
.decode_piece_ids(&[prev_text_token, text_token]);
prev_text_token = text_token;
prev_ids.and_then(|prev_ids| {
ids.map(|ids| {
if ids.len() > prev_ids.len() {
ids[prev_ids.len()..].to_string()
} else {
String::new()
}
})
})?
};
print!("{s}");
std::io::stdout().flush()?
}
}
}
}
}
println!();
Ok(())
}
}
fn main() -> Result<()> {
let args = Args::parse();
let device = device(args.cpu)?;
println!("Using device: {:?}", device);
println!("Loading audio file from: {}", args.in_file);
let (pcm, sample_rate) = kaudio::pcm_decode(args.in_file)?;
let mut pcm = if sample_rate != 24_000 {
kaudio::resample(&pcm, sample_rate as usize, 24_000)?
} else {
pcm
};
// Add some silence at the end to ensure all the audio is processed.
pcm.resize(pcm.len() + 1920 * 32, 0.0);
println!("Loading model from repository: {}", args.hf_repo);
let mut model = Model::load_from_hf(&args.hf_repo, &device)?;
println!("Running inference");
model.run(&pcm)?;
Ok(())
}