170 lines
5.0 KiB
Python
170 lines
5.0 KiB
Python
|
|
"""An example script that illustrates how one can prompt Kyutai STT models."""
|
||
|
|
|
||
|
|
import argparse
|
||
|
|
import dataclasses
|
||
|
|
import itertools
|
||
|
|
import math
|
||
|
|
from collections import deque
|
||
|
|
|
||
|
|
import julius
|
||
|
|
import moshi.models
|
||
|
|
import sphn
|
||
|
|
import torch
|
||
|
|
import tqdm
|
||
|
|
|
||
|
|
|
||
|
|
class PromptHook:
|
||
|
|
def __init__(self, tokenizer, prefix, padding_tokens=(0, 3,)):
|
||
|
|
self.tokenizer = tokenizer
|
||
|
|
self.prefix_enforce = deque(self.tokenizer.encode(prefix))
|
||
|
|
self.padding_tokens = padding_tokens
|
||
|
|
|
||
|
|
def on_token(self, token):
|
||
|
|
if not self.prefix_enforce:
|
||
|
|
return
|
||
|
|
|
||
|
|
token = token.item()
|
||
|
|
|
||
|
|
if token in self.padding_tokens:
|
||
|
|
pass
|
||
|
|
elif token == self.prefix_enforce[0]:
|
||
|
|
self.prefix_enforce.popleft()
|
||
|
|
else:
|
||
|
|
assert False
|
||
|
|
|
||
|
|
def on_logits(self, logits):
|
||
|
|
if not self.prefix_enforce:
|
||
|
|
return
|
||
|
|
|
||
|
|
mask = torch.zeros_like(logits, dtype=torch.bool)
|
||
|
|
for t in self.padding_tokens:
|
||
|
|
mask[..., t] = True
|
||
|
|
mask[..., self.prefix_enforce[0]] = True
|
||
|
|
|
||
|
|
logits[:] = torch.where(mask, logits, float("-inf"))
|
||
|
|
|
||
|
|
|
||
|
|
def main(args):
|
||
|
|
info = moshi.models.loaders.CheckpointInfo.from_hf_repo(
|
||
|
|
args.hf_repo,
|
||
|
|
moshi_weights=args.moshi_weight,
|
||
|
|
mimi_weights=args.mimi_weight,
|
||
|
|
tokenizer=args.tokenizer,
|
||
|
|
config_path=args.config_path,
|
||
|
|
)
|
||
|
|
|
||
|
|
mimi = info.get_mimi(device=args.device)
|
||
|
|
tokenizer = info.get_text_tokenizer()
|
||
|
|
lm = info.get_moshi(
|
||
|
|
device=args.device,
|
||
|
|
dtype=torch.bfloat16,
|
||
|
|
)
|
||
|
|
|
||
|
|
if args.prompt_text:
|
||
|
|
prompt_hook = PromptHook(tokenizer, args.prompt_text)
|
||
|
|
lm_gen = moshi.models.LMGen(
|
||
|
|
lm,
|
||
|
|
temp=0,
|
||
|
|
temp_text=0.0,
|
||
|
|
on_text_hook=prompt_hook.on_token,
|
||
|
|
on_text_logits_hook=prompt_hook.on_logits,
|
||
|
|
)
|
||
|
|
else:
|
||
|
|
lm_gen = moshi.models.LMGen(lm, temp=0, temp_text=0.0)
|
||
|
|
|
||
|
|
audio_silence_prefix_seconds = info.stt_config.get(
|
||
|
|
"audio_silence_prefix_seconds", 1.0
|
||
|
|
)
|
||
|
|
audio_delay_seconds = info.stt_config.get("audio_delay_seconds", 5.0)
|
||
|
|
padding_token_id = info.raw_config.get("text_padding_token_id", 3)
|
||
|
|
|
||
|
|
def _load_and_process(path):
|
||
|
|
audio, input_sample_rate = sphn.read(path)
|
||
|
|
audio = torch.from_numpy(audio).to(args.device).mean(axis=0, keepdim=True)
|
||
|
|
audio = julius.resample_frac(audio, input_sample_rate, mimi.sample_rate)
|
||
|
|
if audio.shape[-1] % mimi.frame_size != 0:
|
||
|
|
to_pad = mimi.frame_size - audio.shape[-1] % mimi.frame_size
|
||
|
|
audio = torch.nn.functional.pad(audio, (0, to_pad))
|
||
|
|
return audio
|
||
|
|
|
||
|
|
n_prefix_chunks = math.ceil(audio_silence_prefix_seconds * mimi.frame_rate)
|
||
|
|
n_suffix_chunks = math.ceil(audio_delay_seconds * mimi.frame_rate)
|
||
|
|
silence_chunk = torch.zeros(
|
||
|
|
(1, 1, mimi.frame_size), dtype=torch.float32, device=args.device
|
||
|
|
)
|
||
|
|
|
||
|
|
audio = _load_and_process(args.file)
|
||
|
|
if args.prompt_file:
|
||
|
|
audio_prompt = _load_and_process(args.prompt_file)
|
||
|
|
else:
|
||
|
|
audio_prompt = None
|
||
|
|
|
||
|
|
chain = [itertools.repeat(silence_chunk, n_prefix_chunks)]
|
||
|
|
|
||
|
|
if audio_prompt is not None:
|
||
|
|
chain.append(torch.split(audio_prompt[:, None], mimi.frame_size, dim=-1))
|
||
|
|
|
||
|
|
chain += [
|
||
|
|
torch.split(audio[:, None], mimi.frame_size, dim=-1),
|
||
|
|
itertools.repeat(silence_chunk, n_suffix_chunks),
|
||
|
|
]
|
||
|
|
|
||
|
|
chunks = itertools.chain(*chain)
|
||
|
|
|
||
|
|
text_tokens_accum = []
|
||
|
|
with mimi.streaming(1), lm_gen.streaming(1):
|
||
|
|
for audio_chunk in tqdm.tqdm(chunks):
|
||
|
|
audio_tokens = mimi.encode(audio_chunk)
|
||
|
|
text_tokens = lm_gen.step(audio_tokens)
|
||
|
|
if text_tokens is not None:
|
||
|
|
text_tokens_accum.append(text_tokens)
|
||
|
|
|
||
|
|
utterance_tokens = torch.concat(text_tokens_accum, dim=-1)
|
||
|
|
text_tokens = utterance_tokens.cpu().view(-1)
|
||
|
|
text = tokenizer.decode(
|
||
|
|
text_tokens[text_tokens > padding_token_id].numpy().tolist()
|
||
|
|
)
|
||
|
|
print(text)
|
||
|
|
|
||
|
|
|
||
|
|
if __name__ == "__main__":
|
||
|
|
parser = argparse.ArgumentParser(description="Example streaming STT w/ a prompt.")
|
||
|
|
parser.add_argument(
|
||
|
|
"--file",
|
||
|
|
required=True,
|
||
|
|
help="File to transcribe.",
|
||
|
|
)
|
||
|
|
parser.add_argument(
|
||
|
|
"--prompt_file",
|
||
|
|
required=False,
|
||
|
|
help="Audio of the prompt.",
|
||
|
|
)
|
||
|
|
parser.add_argument(
|
||
|
|
"--prompt_text",
|
||
|
|
required=False,
|
||
|
|
help="Text of the prompt.",
|
||
|
|
)
|
||
|
|
|
||
|
|
parser.add_argument(
|
||
|
|
"--hf-repo", type=str, help="HF repo to load the STT model from. "
|
||
|
|
)
|
||
|
|
parser.add_argument("--tokenizer", type=str, help="Path to a local tokenizer file.")
|
||
|
|
parser.add_argument(
|
||
|
|
"--moshi-weight", type=str, help="Path to a local checkpoint file."
|
||
|
|
)
|
||
|
|
parser.add_argument(
|
||
|
|
"--mimi-weight", type=str, help="Path to a local checkpoint file for Mimi."
|
||
|
|
)
|
||
|
|
parser.add_argument(
|
||
|
|
"--config-path", type=str, help="Path to a local config file.", default=None
|
||
|
|
)
|
||
|
|
parser.add_argument(
|
||
|
|
"--device",
|
||
|
|
type=str,
|
||
|
|
default="cuda",
|
||
|
|
help="Device on which to run, defaults to 'cuda'.",
|
||
|
|
)
|
||
|
|
args = parser.parse_args()
|
||
|
|
|
||
|
|
main(args)
|