Allow for playing the audio in a streaming way.

This commit is contained in:
Laurent 2025-07-02 16:51:04 +02:00
parent 61206d78c8
commit 236df99003

View File

@ -2,16 +2,16 @@
# requires-python = ">=3.12"
# dependencies = [
# "huggingface_hub",
# "moshi_mlx",
# "moshi_mlx>=0.2.8",
# "numpy",
# "sounddevice",
# ]
# ///
import argparse
from dataclasses import dataclass
import json
from pathlib import Path
import queue
import time
import numpy as np
@ -104,6 +104,7 @@ def main():
cfg_is_no_prefix = True
mimi = tts_model.mimi
log("info", f"reading input from {args.inp}")
with open(args.inp, "r") as fobj:
text_to_tts = fobj.read().strip()
@ -114,39 +115,56 @@ def main():
voices = []
all_attributes = [tts_model.make_condition_attributes(voices, cfg_coef_conditioning)]
begin = time.time()
result = tts_model.generate(
all_entries, all_attributes,
cfg_is_no_prefix=cfg_is_no_prefix, cfg_is_no_text=cfg_is_no_text)
frames = mx.concat(result.frames, axis=-1)
total_duration = frames.shape[0] * frames.shape[-1] / mimi.frame_rate
time_taken = time.time() - begin
total_speed = total_duration / time_taken
log("info", f"[LM] took {time_taken:.2f}s, total speed {total_speed:.2f}x")
wav_frames = queue.Queue()
def _on_audio_hook(audio_tokens):
if (audio_tokens == -1).any():
return
_pcm = tts_model.mimi.decode_step(audio_tokens[None, :, None])
_pcm = np.array(mx.clip(_pcm[0, 0], -1, 1))
wav_frames.put_nowait(_pcm)
def run():
log("info", "starting the inference loop")
begin = time.time()
result = tts_model.generate(
all_entries,
all_attributes,
cfg_is_no_prefix=cfg_is_no_prefix,
cfg_is_no_text=cfg_is_no_text,
on_audio_hook=_on_audio_hook,
)
frames = mx.concat(result.frames, axis=-1)
total_duration = frames.shape[0] * frames.shape[-1] / mimi.frame_rate
time_taken = time.time() - begin
total_speed = total_duration / time_taken
log("info", f"[LM] took {time_taken:.2f}s, total speed {total_speed:.2f}x")
return result
wav_frames = []
for frame in result.frames:
# We are processing frames one by one, although we could group them to improve speed.
_pcm = tts_model.mimi.decode_step(frame)
wav_frames.append(_pcm)
if args.out == "-":
cnt = [0]
def audio_callback(outdata, _a, _b, _c):
if cnt[0] < len(wav_frames):
outdata[:, 0] = wav_frames[cnt[0]][0, 0]
cnt[0] += 1
else:
try:
pcm_data = wav_frames.get(block=False)
outdata[:, 0] = pcm_data
except queue.Empty:
outdata[:] = 0
with sd.OutputStream(samplerate=mimi.sample_rate,
blocksize=1920,
channels=1,
callback=audio_callback):
time.sleep(10)
run()
time.sleep(3)
while True:
if wav_frames.qsize() == 0:
break
time.sleep(1)
else:
wavs = mx.concat(wav_frames, axis=-1)
end_step = result.end_steps[0]
wav_length = int((mimi.sample_rate * (end_step + tts_model.final_padding) / mimi.frame_rate))
wav = np.array(mx.clip(wavs[0, :, :wav_length], -1, 1))
frames = []
while True:
try:
frames.append(wav_frames.get_nowait())
except queue.Empty:
break
wav = np.concat(frames, -1)
sphn.write_wav(args.out, wav, mimi.sample_rate)