Streaming output for the pytorch tts example. (#33)
* Streaming output for the pytorch tts example. * Run the pre-commit hooks.
This commit is contained in:
parent
d3bed09f9a
commit
5f8e924176
|
|
@ -1,7 +1,6 @@
|
|||
"""An example script that illustrates how one can prompt Kyutai STT models."""
|
||||
|
||||
import argparse
|
||||
import dataclasses
|
||||
import itertools
|
||||
import math
|
||||
from collections import deque
|
||||
|
|
|
|||
|
|
@ -11,20 +11,14 @@ import argparse
|
|||
import sys
|
||||
|
||||
import numpy as np
|
||||
import queue
|
||||
import sphn
|
||||
import time
|
||||
import torch
|
||||
from moshi.models.loaders import CheckpointInfo
|
||||
from moshi.models.tts import DEFAULT_DSM_TTS_REPO, DEFAULT_DSM_TTS_VOICE_REPO, TTSModel
|
||||
|
||||
|
||||
def play_audio(audio: np.ndarray, sample_rate: int):
|
||||
# Requires the Portaudio library which might not be available in all environments.
|
||||
import sounddevice as sd
|
||||
|
||||
with sd.OutputStream(samplerate=sample_rate, blocksize=1920, channels=1):
|
||||
sd.play(audio, sample_rate)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Run Kyutai TTS using the PyTorch implementation"
|
||||
|
|
@ -57,6 +51,7 @@ def main():
|
|||
tts_model = TTSModel.from_checkpoint_info(
|
||||
checkpoint_info, n_q=32, temp=0.6, device=torch.device("cuda"), dtype=torch.half
|
||||
)
|
||||
tts_model.mimi.streaming_forever(batch_size=1)
|
||||
|
||||
if args.inp == "-":
|
||||
if sys.stdin.isatty(): # Interactive
|
||||
|
|
@ -75,22 +70,45 @@ def main():
|
|||
[voice_path], cfg_coef=2.0
|
||||
)
|
||||
|
||||
print("Generating audio...")
|
||||
# This doesn't do streaming generation, but the model allows it. For now, see Rust
|
||||
# example.
|
||||
result = tts_model.generate([entries], [condition_attributes])
|
||||
|
||||
frames = torch.cat(result.frames, dim=-1)
|
||||
audio_tokens = frames[:, tts_model.lm.audio_offset :, tts_model.delay_steps :]
|
||||
with torch.no_grad():
|
||||
audios = tts_model.mimi.decode(audio_tokens)
|
||||
|
||||
if args.out == "-":
|
||||
print("Playing audio...")
|
||||
play_audio(audios[0][0].cpu().numpy(), tts_model.mimi.sample_rate)
|
||||
# Stream the audio to the speakers using sounddevice.
|
||||
import sounddevice as sd
|
||||
|
||||
pcms = queue.Queue()
|
||||
|
||||
def _on_frame(frame):
|
||||
if (frame != -1).all():
|
||||
pcm = tts_model.mimi.decode(frame[:, 1:, :]).cpu().numpy()
|
||||
pcms.put_nowait(np.clip(pcm[0, 0], -1, 1))
|
||||
|
||||
def audio_callback(outdata, _a, _b, _c):
|
||||
try:
|
||||
pcm_data = pcms.get(block=False)
|
||||
outdata[:, 0] = pcm_data
|
||||
except queue.Empty:
|
||||
outdata[:] = 0
|
||||
|
||||
with sd.OutputStream(
|
||||
samplerate=tts_model.mimi.sample_rate,
|
||||
blocksize=1920,
|
||||
channels=1,
|
||||
callback=audio_callback,
|
||||
):
|
||||
tts_model.generate([entries], [condition_attributes], on_frame=_on_frame)
|
||||
time.sleep(3)
|
||||
while True:
|
||||
if pcms.qsize() == 0:
|
||||
break
|
||||
time.sleep(1)
|
||||
else:
|
||||
sphn.write_wav(args.out, audios[0].cpu().numpy(), tts_model.mimi.sample_rate)
|
||||
print(f"Audio saved to {args.out}")
|
||||
result = tts_model.generate([entries], [condition_attributes])
|
||||
with torch.no_grad():
|
||||
pcms = []
|
||||
for frame in result.frames[tts_model.delay_steps :]:
|
||||
pcm = tts_model.mimi.decode(frame[:, 1:, :]).cpu().numpy()
|
||||
pcms.append(np.clip(pcm[0, 0], -1, 1))
|
||||
pcm = np.concatenate(pcms, axis=-1)
|
||||
sphn.write_wav(args.out, pcm, tts_model.mimi.sample_rate)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
|||
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue
Block a user