Rename examples and add pre-commit
This commit is contained in:
parent
8bd3f59631
commit
7b818c2636
22
.pre-commit-config.yaml
Normal file
22
.pre-commit-config.yaml
Normal file
|
|
@ -0,0 +1,22 @@
|
||||||
|
repos:
|
||||||
|
# Get rid of Jupyter Notebook output because we don't want to keep it in Git
|
||||||
|
- repo: https://github.com/kynan/nbstripout
|
||||||
|
rev: 0.8.1
|
||||||
|
hooks:
|
||||||
|
- id: nbstripout
|
||||||
|
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||||
|
rev: v5.0.0
|
||||||
|
hooks:
|
||||||
|
- id: check-added-large-files
|
||||||
|
args: ["--maxkb=2048"]
|
||||||
|
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||||
|
# Ruff version.
|
||||||
|
rev: v0.11.7
|
||||||
|
hooks:
|
||||||
|
# Run the linter.
|
||||||
|
- id: ruff
|
||||||
|
types_or: [python, pyi] # Don't run on `jupyter` files
|
||||||
|
args: [--fix]
|
||||||
|
# Run the formatter.
|
||||||
|
- id: ruff-format
|
||||||
|
types_or: [python, pyi] # Don't run on `jupyter` files
|
||||||
17
README.md
17
README.md
|
|
@ -47,6 +47,10 @@ wget https://github.com/kyutai-labs/moshi/raw/refs/heads/main/data/sample_fr_hib
|
||||||
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
||||||
</a>
|
</a>
|
||||||
|
|
||||||
|
For an example of how to use the model in a way where you can directly stream in PyTorch tensors,
|
||||||
|
[see our Colab notebook](https://colab.research.google.com/drive/1mc0Q-FoHxU2pEvId8rTdS4q1r1zorJhS?usp=sharing).
|
||||||
|
|
||||||
|
If you just want to run the model on a file, you can use `moshi.run_inference`.
|
||||||
This requires the [moshi package](https://pypi.org/project/moshi/)
|
This requires the [moshi package](https://pypi.org/project/moshi/)
|
||||||
with version 0.2.6 or later, which can be installed via pip.
|
with version 0.2.6 or later, which can be installed via pip.
|
||||||
|
|
||||||
|
|
@ -107,7 +111,7 @@ moshi-server worker --config configs/config-stt-en_fr-hf.toml
|
||||||
Once the server has started you can run a streaming inference with the following
|
Once the server has started you can run a streaming inference with the following
|
||||||
script.
|
script.
|
||||||
```bash
|
```bash
|
||||||
uv run scripts/asr-streaming-query.py bria.mp3
|
uv run scripts/transcribe_from_file_via_rust_server.py bria.mp3
|
||||||
```
|
```
|
||||||
|
|
||||||
The script limits the decoding speed to simulates real-time processing of the audio.
|
The script limits the decoding speed to simulates real-time processing of the audio.
|
||||||
|
|
@ -166,3 +170,14 @@ Note that parts of this code is based on [AudioCraft](https://github.com/faceboo
|
||||||
the MIT license.
|
the MIT license.
|
||||||
|
|
||||||
The weights for the speech-to-text models are released under the CC-BY 4.0 license.
|
The weights for the speech-to-text models are released under the CC-BY 4.0 license.
|
||||||
|
|
||||||
|
## Developing
|
||||||
|
|
||||||
|
Install the [pre-commit hooks](https://pre-commit.com/) by running:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
pip install pre-commit
|
||||||
|
pre-commit install
|
||||||
|
```
|
||||||
|
|
||||||
|
If you're using `uv`, you can replace the two commands with `uvx pre-commit install`.
|
||||||
|
|
@ -41,18 +41,17 @@ uv run scripts/streaming_stt.py \
|
||||||
# Rev16 === cer: 6.57% wer: 10.08% corpus_wer: 11.43% RTF = 40.34
|
# Rev16 === cer: 6.57% wer: 10.08% corpus_wer: 11.43% RTF = 40.34
|
||||||
# Earnings21 === cer: 5.73% wer: 9.84% corpus_wer: 10.38% RTF = 73.15
|
# Earnings21 === cer: 5.73% wer: 9.84% corpus_wer: 10.38% RTF = 73.15
|
||||||
|
|
||||||
import dataclasses
|
|
||||||
import julius
|
|
||||||
import jiwer
|
|
||||||
from datasets import load_dataset, Dataset
|
|
||||||
from whisper.normalizers import EnglishTextNormalizer
|
|
||||||
import argparse
|
import argparse
|
||||||
|
import dataclasses
|
||||||
import torch
|
|
||||||
import moshi.models
|
|
||||||
import tqdm
|
|
||||||
import time
|
import time
|
||||||
|
|
||||||
|
import jiwer
|
||||||
|
import julius
|
||||||
|
import moshi.models
|
||||||
|
import torch
|
||||||
|
import tqdm
|
||||||
|
from datasets import Dataset, load_dataset
|
||||||
|
from whisper.normalizers import EnglishTextNormalizer
|
||||||
|
|
||||||
_NORMALIZER = EnglishTextNormalizer()
|
_NORMALIZER = EnglishTextNormalizer()
|
||||||
|
|
||||||
|
|
@ -120,9 +119,9 @@ class AsrMetrics:
|
||||||
self.num_sequences += 1
|
self.num_sequences += 1
|
||||||
|
|
||||||
def compute(self) -> dict:
|
def compute(self) -> dict:
|
||||||
assert (
|
assert self.num_sequences > 0, (
|
||||||
self.num_sequences > 0
|
"Unable to compute with total number of comparisons <= 0"
|
||||||
), "Unable to compute with total number of comparisons <= 0" # type: ignore
|
) # type: ignore
|
||||||
return {
|
return {
|
||||||
"cer": (self.cer_sum / self.num_sequences),
|
"cer": (self.cer_sum / self.num_sequences),
|
||||||
"wer": (self.wer_sum / self.num_sequences),
|
"wer": (self.wer_sum / self.num_sequences),
|
||||||
|
|
@ -19,15 +19,15 @@ uv run scripts/streaming_stt_timestamps.py \
|
||||||
```
|
```
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import itertools
|
|
||||||
import dataclasses
|
|
||||||
import julius
|
|
||||||
import sphn
|
|
||||||
import argparse
|
import argparse
|
||||||
|
import dataclasses
|
||||||
|
import itertools
|
||||||
import math
|
import math
|
||||||
|
|
||||||
import torch
|
import julius
|
||||||
import moshi.models
|
import moshi.models
|
||||||
|
import sphn
|
||||||
|
import torch
|
||||||
import tqdm
|
import tqdm
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -10,17 +10,16 @@
|
||||||
import argparse
|
import argparse
|
||||||
import asyncio
|
import asyncio
|
||||||
import json
|
import json
|
||||||
import msgpack
|
|
||||||
import sphn
|
|
||||||
import struct
|
|
||||||
import time
|
import time
|
||||||
|
|
||||||
import numpy as np
|
import msgpack
|
||||||
|
import sphn
|
||||||
import websockets
|
import websockets
|
||||||
|
|
||||||
# Desired audio properties
|
# Desired audio properties
|
||||||
TARGET_SAMPLE_RATE = 24000
|
TARGET_SAMPLE_RATE = 24000
|
||||||
TARGET_CHANNELS = 1 # Mono
|
TARGET_CHANNELS = 1 # Mono
|
||||||
|
HEADERS = {"kyutai-api-key": "open_token"}
|
||||||
all_text = []
|
all_text = []
|
||||||
transcript = []
|
transcript = []
|
||||||
finished = False
|
finished = False
|
||||||
|
|
@ -44,11 +43,13 @@ async def receive_messages(websocket):
|
||||||
print("received:", data)
|
print("received:", data)
|
||||||
if data["type"] == "Word":
|
if data["type"] == "Word":
|
||||||
all_text.append(data["text"])
|
all_text.append(data["text"])
|
||||||
transcript.append({
|
transcript.append(
|
||||||
"speaker": "SPEAKER_00",
|
{
|
||||||
"text": data["text"],
|
"speaker": "SPEAKER_00",
|
||||||
"timestamp": [data["start_time"], data["start_time"]],
|
"text": data["text"],
|
||||||
})
|
"timestamp": [data["start_time"], data["start_time"]],
|
||||||
|
}
|
||||||
|
)
|
||||||
if data["type"] == "EndWord":
|
if data["type"] == "EndWord":
|
||||||
if len(transcript) > 0:
|
if len(transcript) > 0:
|
||||||
transcript[-1]["timestamp"][1] = data["stop_time"]
|
transcript[-1]["timestamp"][1] = data["stop_time"]
|
||||||
|
|
@ -64,15 +65,19 @@ async def send_messages(websocket, rtf: float):
|
||||||
global finished
|
global finished
|
||||||
audio_data = load_and_process_audio(args.in_file)
|
audio_data = load_and_process_audio(args.in_file)
|
||||||
try:
|
try:
|
||||||
# Start with a second of silence
|
# Start with a second of silence.
|
||||||
chunk = { "type": "Audio", "pcm": [0.0] * 24000 }
|
# This is needed for the 2.6B model for technical reasons.
|
||||||
|
chunk = {"type": "Audio", "pcm": [0.0] * 24000}
|
||||||
msg = msgpack.packb(chunk, use_bin_type=True, use_single_float=True)
|
msg = msgpack.packb(chunk, use_bin_type=True, use_single_float=True)
|
||||||
await websocket.send(msg)
|
await websocket.send(msg)
|
||||||
|
|
||||||
chunk_size = 1920 # Send data in chunks
|
chunk_size = 1920 # Send data in chunks
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
for i in range(0, len(audio_data), chunk_size):
|
for i in range(0, len(audio_data), chunk_size):
|
||||||
chunk = { "type": "Audio", "pcm": [float(x) for x in audio_data[i : i + chunk_size]] }
|
chunk = {
|
||||||
|
"type": "Audio",
|
||||||
|
"pcm": [float(x) for x in audio_data[i : i + chunk_size]],
|
||||||
|
}
|
||||||
msg = msgpack.packb(chunk, use_bin_type=True, use_single_float=True)
|
msg = msgpack.packb(chunk, use_bin_type=True, use_single_float=True)
|
||||||
await websocket.send(msg)
|
await websocket.send(msg)
|
||||||
expected_send_time = start_time + (i + 1) / 24000 / rtf
|
expected_send_time = start_time + (i + 1) / 24000 / rtf
|
||||||
|
|
@ -81,13 +86,15 @@ async def send_messages(websocket, rtf: float):
|
||||||
await asyncio.sleep(expected_send_time - current_time)
|
await asyncio.sleep(expected_send_time - current_time)
|
||||||
else:
|
else:
|
||||||
await asyncio.sleep(0.001)
|
await asyncio.sleep(0.001)
|
||||||
chunk = { "type": "Audio", "pcm": [0.0] * 1920 * 5 }
|
chunk = {"type": "Audio", "pcm": [0.0] * 1920 * 5}
|
||||||
msg = msgpack.packb(chunk, use_bin_type=True, use_single_float=True)
|
msg = msgpack.packb(chunk, use_bin_type=True, use_single_float=True)
|
||||||
await websocket.send(msg)
|
await websocket.send(msg)
|
||||||
msg = msgpack.packb({"type": "Marker", "id": 0}, use_bin_type=True, use_single_float=True)
|
msg = msgpack.packb(
|
||||||
|
{"type": "Marker", "id": 0}, use_bin_type=True, use_single_float=True
|
||||||
|
)
|
||||||
await websocket.send(msg)
|
await websocket.send(msg)
|
||||||
for _ in range(35):
|
for _ in range(35):
|
||||||
chunk = { "type": "Audio", "pcm": [0.0] * 1920 }
|
chunk = {"type": "Audio", "pcm": [0.0] * 1920}
|
||||||
msg = msgpack.packb(chunk, use_bin_type=True, use_single_float=True)
|
msg = msgpack.packb(chunk, use_bin_type=True, use_single_float=True)
|
||||||
await websocket.send(msg)
|
await websocket.send(msg)
|
||||||
while True:
|
while True:
|
||||||
|
|
@ -100,11 +107,10 @@ async def send_messages(websocket, rtf: float):
|
||||||
print("Connection closed while sending messages.")
|
print("Connection closed while sending messages.")
|
||||||
|
|
||||||
|
|
||||||
async def stream_audio(url: str, rtf: float, api_key: str):
|
async def stream_audio(url: str, rtf: float):
|
||||||
"""Stream audio data to a WebSocket server."""
|
"""Stream audio data to a WebSocket server."""
|
||||||
|
|
||||||
headers = {"kyutai-api-key": api_key}
|
async with websockets.connect(url, additional_headers=HEADERS) as websocket:
|
||||||
async with websockets.connect(url, additional_headers=headers) as websocket:
|
|
||||||
send_task = asyncio.create_task(send_messages(websocket, rtf))
|
send_task = asyncio.create_task(send_messages(websocket, rtf))
|
||||||
receive_task = asyncio.create_task(receive_messages(websocket))
|
receive_task = asyncio.create_task(receive_messages(websocket))
|
||||||
await asyncio.gather(send_task, receive_task)
|
await asyncio.gather(send_task, receive_task)
|
||||||
|
|
@ -115,7 +121,6 @@ if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument("in_file")
|
parser.add_argument("in_file")
|
||||||
parser.add_argument("--transcript")
|
parser.add_argument("--transcript")
|
||||||
parser.add_argument("--api-key", default="open_token")
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--url",
|
"--url",
|
||||||
help="The url of the server to which to send the audio",
|
help="The url of the server to which to send the audio",
|
||||||
|
|
@ -125,7 +130,7 @@ if __name__ == "__main__":
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
url = f"{args.url}/api/asr-streaming"
|
url = f"{args.url}/api/asr-streaming"
|
||||||
asyncio.run(stream_audio(url, args.rtf, args.api_key))
|
asyncio.run(stream_audio(url, args.rtf))
|
||||||
print(" ".join(all_text))
|
print(" ".join(all_text))
|
||||||
if args.transcript is not None:
|
if args.transcript is not None:
|
||||||
with open(args.transcript, "w") as fobj:
|
with open(args.transcript, "w") as fobj:
|
||||||
|
|
@ -11,19 +11,16 @@
|
||||||
# ///
|
# ///
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
from dataclasses import dataclass
|
|
||||||
import json
|
import json
|
||||||
import numpy as np
|
|
||||||
import queue
|
import queue
|
||||||
import sounddevice as sd
|
|
||||||
|
|
||||||
from huggingface_hub import hf_hub_download
|
|
||||||
import mlx.core as mx
|
import mlx.core as mx
|
||||||
import mlx.nn as nn
|
import mlx.nn as nn
|
||||||
from moshi_mlx import models, utils
|
|
||||||
import rustymimi
|
import rustymimi
|
||||||
import sentencepiece
|
import sentencepiece
|
||||||
|
import sounddevice as sd
|
||||||
|
from huggingface_hub import hf_hub_download
|
||||||
|
from moshi_mlx import models, utils
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
|
|
@ -69,6 +66,7 @@ if __name__ == "__main__":
|
||||||
)
|
)
|
||||||
|
|
||||||
block_queue = queue.Queue()
|
block_queue = queue.Queue()
|
||||||
|
|
||||||
def audio_callback(indata, _frames, _time, _status):
|
def audio_callback(indata, _frames, _time, _status):
|
||||||
block_queue.put(indata.copy())
|
block_queue.put(indata.copy())
|
||||||
|
|
||||||
|
|
@ -84,7 +82,9 @@ if __name__ == "__main__":
|
||||||
block = block_queue.get()
|
block = block_queue.get()
|
||||||
block = block[None, :, 0]
|
block = block[None, :, 0]
|
||||||
other_audio_tokens = audio_tokenizer.encode_step(block[None, 0:1])
|
other_audio_tokens = audio_tokenizer.encode_step(block[None, 0:1])
|
||||||
other_audio_tokens = mx.array(other_audio_tokens).transpose(0, 2, 1)[:, :, :other_codebooks]
|
other_audio_tokens = mx.array(other_audio_tokens).transpose(0, 2, 1)[
|
||||||
|
:, :, :other_codebooks
|
||||||
|
]
|
||||||
text_token = gen.step(other_audio_tokens[0])
|
text_token = gen.step(other_audio_tokens[0])
|
||||||
text_token = text_token[0].item()
|
text_token = text_token[0].item()
|
||||||
audio_tokens = gen.last_audio_tokens()
|
audio_tokens = gen.last_audio_tokens()
|
||||||
|
|
@ -93,4 +93,3 @@ if __name__ == "__main__":
|
||||||
_text = text_tokenizer.id_to_piece(text_token) # type: ignore
|
_text = text_tokenizer.id_to_piece(text_token) # type: ignore
|
||||||
_text = _text.replace("▁", " ")
|
_text = _text.replace("▁", " ")
|
||||||
print(_text, end="", flush=True)
|
print(_text, end="", flush=True)
|
||||||
|
|
||||||
|
|
@ -9,9 +9,9 @@
|
||||||
# ///
|
# ///
|
||||||
import argparse
|
import argparse
|
||||||
import asyncio
|
import asyncio
|
||||||
import msgpack
|
|
||||||
import signal
|
import signal
|
||||||
|
|
||||||
|
import msgpack
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import sounddevice as sd
|
import sounddevice as sd
|
||||||
import websockets
|
import websockets
|
||||||
|
|
@ -21,6 +21,7 @@ TARGET_SAMPLE_RATE = 24000
|
||||||
TARGET_CHANNELS = 1 # Mono
|
TARGET_CHANNELS = 1 # Mono
|
||||||
audio_queue = asyncio.Queue()
|
audio_queue = asyncio.Queue()
|
||||||
|
|
||||||
|
|
||||||
async def receive_messages(websocket):
|
async def receive_messages(websocket):
|
||||||
"""Receive and process messages from the WebSocket server."""
|
"""Receive and process messages from the WebSocket server."""
|
||||||
try:
|
try:
|
||||||
|
|
@ -47,22 +48,26 @@ async def send_messages(websocket):
|
||||||
except websockets.ConnectionClosed:
|
except websockets.ConnectionClosed:
|
||||||
print("Connection closed while sending messages.")
|
print("Connection closed while sending messages.")
|
||||||
|
|
||||||
|
|
||||||
async def stream_audio(url: str, api_key: str):
|
async def stream_audio(url: str, api_key: str):
|
||||||
"""Stream audio data to a WebSocket server."""
|
"""Stream audio data to a WebSocket server."""
|
||||||
print("Starting microphone recording...")
|
print("Starting microphone recording...")
|
||||||
print("Press Ctrl+C to stop recording")
|
print("Press Ctrl+C to stop recording")
|
||||||
|
|
||||||
loop = asyncio.get_event_loop()
|
loop = asyncio.get_event_loop()
|
||||||
def audio_callback(indata, frames, time, status):
|
|
||||||
loop.call_soon_threadsafe(audio_queue.put_nowait, indata[:, 0].astype(np.float32).copy())
|
|
||||||
|
|
||||||
# Start audio stream
|
def audio_callback(indata, frames, time, status):
|
||||||
|
loop.call_soon_threadsafe(
|
||||||
|
audio_queue.put_nowait, indata[:, 0].astype(np.float32).copy()
|
||||||
|
)
|
||||||
|
|
||||||
|
# Start audio stream
|
||||||
with sd.InputStream(
|
with sd.InputStream(
|
||||||
samplerate=TARGET_SAMPLE_RATE,
|
samplerate=TARGET_SAMPLE_RATE,
|
||||||
channels=TARGET_CHANNELS,
|
channels=TARGET_CHANNELS,
|
||||||
dtype='float32',
|
dtype="float32",
|
||||||
callback=audio_callback,
|
callback=audio_callback,
|
||||||
blocksize=1920 # 80ms blocks
|
blocksize=1920, # 80ms blocks
|
||||||
):
|
):
|
||||||
headers = {"kyutai-api-key": api_key}
|
headers = {"kyutai-api-key": api_key}
|
||||||
async with websockets.connect(url, additional_headers=headers) as websocket:
|
async with websockets.connect(url, additional_headers=headers) as websocket:
|
||||||
|
|
@ -79,8 +84,12 @@ if __name__ == "__main__":
|
||||||
default="ws://127.0.0.1:8080",
|
default="ws://127.0.0.1:8080",
|
||||||
)
|
)
|
||||||
parser.add_argument("--api-key", default="open_token")
|
parser.add_argument("--api-key", default="open_token")
|
||||||
parser.add_argument("--list-devices", action="store_true", help="List available audio devices")
|
parser.add_argument(
|
||||||
parser.add_argument("--device", type=int, help="Input device ID (use --list-devices to see options)")
|
"--list-devices", action="store_true", help="List available audio devices"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--device", type=int, help="Input device ID (use --list-devices to see options)"
|
||||||
|
)
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
240
transcribe_via_pytorch.ipynb
Normal file
240
transcribe_via_pytorch.ipynb
Normal file
|
|
@ -0,0 +1,240 @@
|
||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"colab": {
|
||||||
|
"base_uri": "https://localhost:8080/"
|
||||||
|
},
|
||||||
|
"id": "gJEMjPgeI-rw",
|
||||||
|
"outputId": "7491c067-b1be-4505-b3f5-19ba4c00a593"
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"!pip install moshi"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"colab": {
|
||||||
|
"base_uri": "https://localhost:8080/"
|
||||||
|
},
|
||||||
|
"id": "CA4K5iDFJcqJ",
|
||||||
|
"outputId": "b609843a-a193-4729-b099-5f8780532333"
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"!wget https://github.com/kyutai-labs/moshi/raw/refs/heads/main/data/sample_fr_hibiki_crepes.mp3"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"id": "VA3Haix3IZ8Q"
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from dataclasses import dataclass\n",
|
||||||
|
"import time\n",
|
||||||
|
"import sentencepiece\n",
|
||||||
|
"import sphn\n",
|
||||||
|
"import textwrap\n",
|
||||||
|
"import torch\n",
|
||||||
|
"\n",
|
||||||
|
"from moshi.models import loaders, MimiModel, LMModel, LMGen"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"id": "9AK5zBMTI9bw"
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"@dataclass\n",
|
||||||
|
"class InferenceState:\n",
|
||||||
|
" mimi: MimiModel\n",
|
||||||
|
" text_tokenizer: sentencepiece.SentencePieceProcessor\n",
|
||||||
|
" lm_gen: LMGen\n",
|
||||||
|
"\n",
|
||||||
|
" def __init__(\n",
|
||||||
|
" self,\n",
|
||||||
|
" mimi: MimiModel,\n",
|
||||||
|
" text_tokenizer: sentencepiece.SentencePieceProcessor,\n",
|
||||||
|
" lm: LMModel,\n",
|
||||||
|
" batch_size: int,\n",
|
||||||
|
" device: str | torch.device,\n",
|
||||||
|
" ):\n",
|
||||||
|
" self.mimi = mimi\n",
|
||||||
|
" self.text_tokenizer = text_tokenizer\n",
|
||||||
|
" self.lm_gen = LMGen(lm, temp=0, temp_text=0, use_sampling=False)\n",
|
||||||
|
" self.device = device\n",
|
||||||
|
" self.frame_size = int(self.mimi.sample_rate / self.mimi.frame_rate)\n",
|
||||||
|
" self.batch_size = batch_size\n",
|
||||||
|
" self.mimi.streaming_forever(batch_size)\n",
|
||||||
|
" self.lm_gen.streaming_forever(batch_size)\n",
|
||||||
|
"\n",
|
||||||
|
" def run(self, in_pcms: torch.Tensor):\n",
|
||||||
|
" device = self.lm_gen.lm_model.device\n",
|
||||||
|
" ntokens = 0\n",
|
||||||
|
" first_frame = True\n",
|
||||||
|
" chunks = [\n",
|
||||||
|
" c\n",
|
||||||
|
" for c in in_pcms.split(self.frame_size, dim=2)\n",
|
||||||
|
" if c.shape[-1] == self.frame_size\n",
|
||||||
|
" ]\n",
|
||||||
|
" start_time = time.time()\n",
|
||||||
|
" all_text = []\n",
|
||||||
|
" for chunk in chunks:\n",
|
||||||
|
" codes = self.mimi.encode(chunk)\n",
|
||||||
|
" if first_frame:\n",
|
||||||
|
" # Ensure that the first slice of codes is properly seen by the transformer\n",
|
||||||
|
" # as otherwise the first slice is replaced by the initial tokens.\n",
|
||||||
|
" tokens = self.lm_gen.step(codes)\n",
|
||||||
|
" first_frame = False\n",
|
||||||
|
" tokens = self.lm_gen.step(codes)\n",
|
||||||
|
" if tokens is None:\n",
|
||||||
|
" continue\n",
|
||||||
|
" assert tokens.shape[1] == 1\n",
|
||||||
|
" one_text = tokens[0, 0].cpu()\n",
|
||||||
|
" if one_text.item() not in [0, 3]:\n",
|
||||||
|
" text = self.text_tokenizer.id_to_piece(one_text.item())\n",
|
||||||
|
" text = text.replace(\"▁\", \" \")\n",
|
||||||
|
" all_text.append(text)\n",
|
||||||
|
" ntokens += 1\n",
|
||||||
|
" dt = time.time() - start_time\n",
|
||||||
|
" print(\n",
|
||||||
|
" f\"processed {ntokens} steps in {dt:.0f}s, {1000 * dt / ntokens:.2f}ms/step\"\n",
|
||||||
|
" )\n",
|
||||||
|
" return \"\".join(all_text)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"colab": {
|
||||||
|
"base_uri": "https://localhost:8080/",
|
||||||
|
"height": 353,
|
||||||
|
"referenced_widgets": [
|
||||||
|
"0a5f6f887e2b4cd1990a0e9ec0153ed9",
|
||||||
|
"f7893826fcba4bdc87539589d669249b",
|
||||||
|
"8805afb12c484781be85082ff02dad13",
|
||||||
|
"97679c0d9ab44bed9a3456f2fcb541fd",
|
||||||
|
"d73c0321bed54a52b5e1da0a7788e32a",
|
||||||
|
"d67be13a920d4fc89e5570b5b29fc1d2",
|
||||||
|
"6b377c2d7bf945fb89e46c39d246a332",
|
||||||
|
"b82ff365c78e41ad8094b46daf79449d",
|
||||||
|
"477aa7fa82dc42d5bce6f1743c45d626",
|
||||||
|
"cbd288510c474430beb66f346f382c45",
|
||||||
|
"aafc347cdf28428ea6a7abe5b46b726f",
|
||||||
|
"fca09acd5d0d45468c8b04bfb2de7646",
|
||||||
|
"79e35214b51b4a9e9b3f7144b0b34f7b",
|
||||||
|
"89e9a37f69904bd48b954d627bff6687",
|
||||||
|
"57028789c78248a7b0ad4f031c9545c9",
|
||||||
|
"1150fcb427994c2984d4d0f4e4745fe5",
|
||||||
|
"e24b1fc52f294f849019c9b3befb613f",
|
||||||
|
"8724878682cf4c3ca992667c45009398",
|
||||||
|
"36a22c977d5242008871310133b7d2af",
|
||||||
|
"5b3683cad5cb4877b43fadd003edf97f",
|
||||||
|
"703f98272e4d469d8f27f5a465715dd8",
|
||||||
|
"9dbe02ef5fac41cfaee3d02946e65c88",
|
||||||
|
"37faa87ad03a4271992c21ce6a629e18",
|
||||||
|
"570c547e48cd421b814b2c5e028e4c0b",
|
||||||
|
"b173768580fc4c0a8e3abf272e4c363a",
|
||||||
|
"e57d1620f0a9427b85d8b4885ef4e8e3",
|
||||||
|
"5dd4474df70743498b616608182714dd",
|
||||||
|
"cc907676a65f4ad1bf68a77b4a00e89b",
|
||||||
|
"a34abc3b118e4305951a466919c28ff6",
|
||||||
|
"a77ccfcdb90146c7a63b4b2d232bc494",
|
||||||
|
"f7313e6e3a27475993cab3961d6ae363",
|
||||||
|
"39b47fad9c554839868fe9e4bbf7def2",
|
||||||
|
"14e9511ea0bd44c49f0cf3abf1a6d40e",
|
||||||
|
"a4ea8e0c4cac4d5e88b7e3f527e4fe90",
|
||||||
|
"571afc0f4b2840c9830d6b5a307ed1f9",
|
||||||
|
"6ec593cab5b64f0ea638bb175b9daa5c",
|
||||||
|
"77a52aed00ae408bb24524880e19ec8a",
|
||||||
|
"0b2de4b29b4b44fe9d96361a40c793d0",
|
||||||
|
"3c5b5fb1a5ac468a89c1058bd90cfb58",
|
||||||
|
"e53e0a2a240e43cfa562c89b3d703dea",
|
||||||
|
"35966343cf9249ef8bc028a0d5c5f97d",
|
||||||
|
"e36a37e0d41c47ccb8bc6d56c19fb17c",
|
||||||
|
"279ccf7de43847a1a6579c9182a46cc8",
|
||||||
|
"41b5d6ab0b7d43c790a55f125c0e7494"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"id": "UsQJdAgkLp9n",
|
||||||
|
"outputId": "9b7131c3-69c5-4323-8312-2ce7621d8869"
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"device = \"cuda\"\n",
|
||||||
|
"# Use the en+fr low latency model, an alternative is kyutai/stt-2.6b-en\n",
|
||||||
|
"checkpoint_info = loaders.CheckpointInfo.from_hf_repo(\"kyutai/stt-1b-en_fr\")\n",
|
||||||
|
"mimi = checkpoint_info.get_mimi(device=device)\n",
|
||||||
|
"text_tokenizer = checkpoint_info.get_text_tokenizer()\n",
|
||||||
|
"lm = checkpoint_info.get_moshi(device=device)\n",
|
||||||
|
"in_pcms, _ = sphn.read(\"sample_fr_hibiki_crepes.mp3\", sample_rate=mimi.sample_rate)\n",
|
||||||
|
"in_pcms = torch.from_numpy(in_pcms).to(device=device)\n",
|
||||||
|
"\n",
|
||||||
|
"stt_config = checkpoint_info.stt_config\n",
|
||||||
|
"pad_left = int(stt_config.get(\"audio_silence_prefix_seconds\", 0.0) * 24000)\n",
|
||||||
|
"pad_right = int((stt_config.get(\"audio_delay_seconds\", 0.0) + 1.0) * 24000)\n",
|
||||||
|
"in_pcms = torch.nn.functional.pad(in_pcms, (pad_left, pad_right), mode=\"constant\")\n",
|
||||||
|
"in_pcms = in_pcms[None, 0:1].expand(1, -1, -1)\n",
|
||||||
|
"\n",
|
||||||
|
"state = InferenceState(mimi, text_tokenizer, lm, batch_size=1, device=device)\n",
|
||||||
|
"text = state.run(in_pcms)\n",
|
||||||
|
"print(textwrap.fill(text, width=100))"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"colab": {
|
||||||
|
"base_uri": "https://localhost:8080/",
|
||||||
|
"height": 75
|
||||||
|
},
|
||||||
|
"id": "CIAXs9oaPrtj",
|
||||||
|
"outputId": "94cc208c-2454-4dd4-a64e-d79025144af5"
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from IPython.display import Audio\n",
|
||||||
|
"\n",
|
||||||
|
"Audio(\"sample_fr_hibiki_crepes.mp3\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"id": "qkUZ6CBKOdTa"
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"accelerator": "GPU",
|
||||||
|
"colab": {
|
||||||
|
"gpuType": "L4",
|
||||||
|
"provenance": []
|
||||||
|
},
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"name": "python"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 0
|
||||||
|
}
|
||||||
Loading…
Reference in New Issue
Block a user