Add a MLX STT example that uses VAD. (#70)
* Add a MLX STT example that uses VAD. * VAD support. * More MLX VAD example. * Use the latest moshi-mlx.
This commit is contained in:
parent
6d3bb6b1f1
commit
952319de90
95
scripts/stt_from_file_mlx.py
Normal file
95
scripts/stt_from_file_mlx.py
Normal file
|
|
@ -0,0 +1,95 @@
|
|||
# /// script
|
||||
# requires-python = ">=3.12"
|
||||
# dependencies = [
|
||||
# "huggingface_hub",
|
||||
# "moshi_mlx==0.2.10",
|
||||
# "numpy",
|
||||
# "sentencepiece",
|
||||
# "sounddevice",
|
||||
# "sphn",
|
||||
# ]
|
||||
# ///
|
||||
|
||||
import argparse
|
||||
import json
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import sentencepiece
|
||||
import sphn
|
||||
from huggingface_hub import hf_hub_download
|
||||
from moshi_mlx import models, utils
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("in_file", help="The file to transcribe.")
|
||||
parser.add_argument("--max-steps", default=4096)
|
||||
parser.add_argument("--hf-repo", default="kyutai/stt-1b-en_fr-mlx")
|
||||
parser.add_argument(
|
||||
"--vad", action="store_true", help="Enable VAD (Voice Activity Detection)."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
audio, _ = sphn.read(args.in_file, sample_rate=24000)
|
||||
lm_config = hf_hub_download(args.hf_repo, "config.json")
|
||||
with open(lm_config, "r") as fobj:
|
||||
lm_config = json.load(fobj)
|
||||
mimi_weights = hf_hub_download(args.hf_repo, lm_config["mimi_name"])
|
||||
moshi_name = lm_config.get("moshi_name", "model.safetensors")
|
||||
moshi_weights = hf_hub_download(args.hf_repo, moshi_name)
|
||||
text_tokenizer = hf_hub_download(args.hf_repo, lm_config["tokenizer_name"])
|
||||
|
||||
lm_config = models.LmConfig.from_config_dict(lm_config)
|
||||
model = models.Lm(lm_config)
|
||||
model.set_dtype(mx.bfloat16)
|
||||
if moshi_weights.endswith(".q4.safetensors"):
|
||||
nn.quantize(model, bits=4, group_size=32)
|
||||
elif moshi_weights.endswith(".q8.safetensors"):
|
||||
nn.quantize(model, bits=8, group_size=64)
|
||||
|
||||
print(f"loading model weights from {moshi_weights}")
|
||||
if args.hf_repo.endswith("-candle"):
|
||||
model.load_pytorch_weights(moshi_weights, lm_config, strict=True)
|
||||
else:
|
||||
model.load_weights(moshi_weights, strict=True)
|
||||
|
||||
print(f"loading the text tokenizer from {text_tokenizer}")
|
||||
text_tokenizer = sentencepiece.SentencePieceProcessor(text_tokenizer) # type: ignore
|
||||
|
||||
print(f"loading the audio tokenizer {mimi_weights}")
|
||||
audio_tokenizer = models.mimi.Mimi(models.mimi_202407(32))
|
||||
audio_tokenizer.load_pytorch_weights(str(mimi_weights), strict=True)
|
||||
print("warming up the model")
|
||||
model.warmup()
|
||||
gen = models.LmGen(
|
||||
model=model,
|
||||
max_steps=args.max_steps,
|
||||
text_sampler=utils.Sampler(top_k=25, temp=0),
|
||||
audio_sampler=utils.Sampler(top_k=250, temp=0.8),
|
||||
check=False,
|
||||
)
|
||||
|
||||
print(f"starting inference {audio.shape}")
|
||||
audio = mx.concat([mx.array(audio), mx.zeros((1, 48000))], axis=-1)
|
||||
last_print_was_vad = False
|
||||
for start_idx in range(0, audio.shape[-1] // 1920 * 1920, 1920):
|
||||
block = audio[:, None, start_idx : start_idx + 1920]
|
||||
other_audio_tokens = audio_tokenizer.encode_step(block).transpose(0, 2, 1)
|
||||
if args.vad:
|
||||
text_token, vad_heads = gen.step_with_extra_heads(other_audio_tokens[0])
|
||||
if vad_heads:
|
||||
pr_vad = vad_heads[2][0, 0, 0].item()
|
||||
if pr_vad > 0.5 and not last_print_was_vad:
|
||||
print(" [end of turn detected]")
|
||||
last_print_was_vad = True
|
||||
else:
|
||||
text_token = gen.step(other_audio_tokens[0])
|
||||
text_token = text_token[0].item()
|
||||
audio_tokens = gen.last_audio_tokens()
|
||||
_text = None
|
||||
if text_token not in (0, 3):
|
||||
_text = text_tokenizer.id_to_piece(text_token) # type: ignore
|
||||
_text = _text.replace("▁", " ")
|
||||
print(_text, end="", flush=True)
|
||||
last_print_was_vad = False
|
||||
print()
|
||||
Loading…
Reference in New Issue
Block a user