STT example w/ prompting (#26)
* STT example w/ prompting * Text-audio prompt example into README.md + cutting prompt transcript. * A line in README * formatting in README --------- Co-authored-by: Eugene <eugene@kyutai.org>
This commit is contained in:
parent
395eaeae95
commit
c4ef93770a
17
README.md
17
README.md
|
|
@ -87,6 +87,23 @@ uv run scripts/evaluate_on_dataset.py \
|
|||
--hf-repo kyutai/stt-2.6b-en
|
||||
```
|
||||
|
||||
Another example shows how one can provide a text-, audio-, or text-audio prompt to our STT model:
|
||||
```bash
|
||||
uv run scripts/transcribe_from_file_via_pytorch_with_prompt.py \
|
||||
--hf-repo kyutai/stt-2.6b-en \
|
||||
--file bria.mp3 \
|
||||
--prompt_file ./audio/loonah.mp3 \
|
||||
--prompt_text "Loonah" \
|
||||
--cut-prompt-transcript
|
||||
```
|
||||
Produces the transcript of `bria.mp3` using the `Loonah` spelling for the name, instead of the `Luna` used without any prompt:
|
||||
```
|
||||
In the heart of an ancient forest, where the trees whispered secrets of the past, there lived a peculiar rabbit named Loonah (...)
|
||||
```
|
||||
|
||||
Apart from nudging the model for a specific spelling of a word, other potential use-cases include speaker adaptation and steering the model towards a specific formatting style or even a language.
|
||||
However, please bear in mind that is an experimental feature and its behavior is very sensitive to the prompt provided.
|
||||
|
||||
### Rust server
|
||||
|
||||
<a href="https://huggingface.co/kyutai/stt-2.6b-en-candle" target="_blank" style="margin: 2px;">
|
||||
|
|
|
|||
BIN
audio/loona.mp3
Normal file
BIN
audio/loona.mp3
Normal file
Binary file not shown.
196
scripts/transcribe_from_file_via_pytorch_with_prompt.py
Normal file
196
scripts/transcribe_from_file_via_pytorch_with_prompt.py
Normal file
|
|
@ -0,0 +1,196 @@
|
|||
"""An example script that illustrates how one can prompt Kyutai STT models."""
|
||||
|
||||
import argparse
|
||||
import dataclasses
|
||||
import itertools
|
||||
import math
|
||||
from collections import deque
|
||||
|
||||
import julius
|
||||
import moshi.models
|
||||
import sphn
|
||||
import torch
|
||||
import tqdm
|
||||
|
||||
|
||||
class PromptHook:
|
||||
def __init__(
|
||||
self,
|
||||
tokenizer,
|
||||
prefix,
|
||||
padding_tokens=(
|
||||
0,
|
||||
3,
|
||||
),
|
||||
):
|
||||
self.tokenizer = tokenizer
|
||||
self.prefix_enforce = deque(self.tokenizer.encode(prefix))
|
||||
self.padding_tokens = padding_tokens
|
||||
|
||||
def on_token(self, token):
|
||||
if not self.prefix_enforce:
|
||||
return
|
||||
|
||||
token = token.item()
|
||||
|
||||
if token in self.padding_tokens:
|
||||
pass
|
||||
elif token == self.prefix_enforce[0]:
|
||||
self.prefix_enforce.popleft()
|
||||
else:
|
||||
assert False
|
||||
|
||||
def on_logits(self, logits):
|
||||
if not self.prefix_enforce:
|
||||
return
|
||||
|
||||
mask = torch.zeros_like(logits, dtype=torch.bool)
|
||||
for t in self.padding_tokens:
|
||||
mask[..., t] = True
|
||||
mask[..., self.prefix_enforce[0]] = True
|
||||
|
||||
logits[:] = torch.where(mask, logits, float("-inf"))
|
||||
|
||||
|
||||
def main(args):
|
||||
info = moshi.models.loaders.CheckpointInfo.from_hf_repo(
|
||||
args.hf_repo,
|
||||
moshi_weights=args.moshi_weight,
|
||||
mimi_weights=args.mimi_weight,
|
||||
tokenizer=args.tokenizer,
|
||||
config_path=args.config_path,
|
||||
)
|
||||
|
||||
mimi = info.get_mimi(device=args.device)
|
||||
tokenizer = info.get_text_tokenizer()
|
||||
lm = info.get_moshi(
|
||||
device=args.device,
|
||||
dtype=torch.bfloat16,
|
||||
)
|
||||
|
||||
if args.prompt_text:
|
||||
prompt_hook = PromptHook(tokenizer, args.prompt_text)
|
||||
lm_gen = moshi.models.LMGen(
|
||||
lm,
|
||||
temp=0,
|
||||
temp_text=0.0,
|
||||
on_text_hook=prompt_hook.on_token,
|
||||
on_text_logits_hook=prompt_hook.on_logits,
|
||||
)
|
||||
else:
|
||||
lm_gen = moshi.models.LMGen(lm, temp=0, temp_text=0.0)
|
||||
|
||||
audio_silence_prefix_seconds = info.stt_config.get(
|
||||
"audio_silence_prefix_seconds", 1.0
|
||||
)
|
||||
audio_delay_seconds = info.stt_config.get("audio_delay_seconds", 5.0)
|
||||
padding_token_id = info.raw_config.get("text_padding_token_id", 3)
|
||||
|
||||
def _load_and_process(path):
|
||||
audio, input_sample_rate = sphn.read(path)
|
||||
audio = torch.from_numpy(audio).to(args.device).mean(axis=0, keepdim=True)
|
||||
audio = julius.resample_frac(audio, input_sample_rate, mimi.sample_rate)
|
||||
if audio.shape[-1] % mimi.frame_size != 0:
|
||||
to_pad = mimi.frame_size - audio.shape[-1] % mimi.frame_size
|
||||
audio = torch.nn.functional.pad(audio, (0, to_pad))
|
||||
return audio
|
||||
|
||||
n_prefix_chunks = math.ceil(audio_silence_prefix_seconds * mimi.frame_rate)
|
||||
n_suffix_chunks = math.ceil(audio_delay_seconds * mimi.frame_rate)
|
||||
silence_chunk = torch.zeros(
|
||||
(1, 1, mimi.frame_size), dtype=torch.float32, device=args.device
|
||||
)
|
||||
|
||||
audio = _load_and_process(args.file)
|
||||
if args.prompt_file:
|
||||
audio_prompt = _load_and_process(args.prompt_file)
|
||||
else:
|
||||
audio_prompt = None
|
||||
|
||||
chain = [itertools.repeat(silence_chunk, n_prefix_chunks)]
|
||||
|
||||
if audio_prompt is not None:
|
||||
chain.append(torch.split(audio_prompt[:, None, :], mimi.frame_size, dim=-1))
|
||||
# adding a bit (0.8s) of silence to separate prompt and the actual audio
|
||||
chain.append(itertools.repeat(silence_chunk, 10))
|
||||
|
||||
chain += [
|
||||
torch.split(audio[:, None, :], mimi.frame_size, dim=-1),
|
||||
itertools.repeat(silence_chunk, n_suffix_chunks),
|
||||
]
|
||||
|
||||
chunks = itertools.chain(*chain)
|
||||
|
||||
text_tokens_accum = []
|
||||
with mimi.streaming(1), lm_gen.streaming(1):
|
||||
for audio_chunk in tqdm.tqdm(chunks):
|
||||
audio_tokens = mimi.encode(audio_chunk)
|
||||
text_tokens = lm_gen.step(audio_tokens)
|
||||
if text_tokens is not None:
|
||||
text_tokens_accum.append(text_tokens)
|
||||
|
||||
utterance_tokens = torch.concat(text_tokens_accum, dim=-1)
|
||||
text_tokens = utterance_tokens.cpu().view(-1)
|
||||
|
||||
# if we have an audio prompt and we don't want to have it in the transcript,
|
||||
# we should cut the corresponding number of frames from the output tokens.
|
||||
# However, there is also some amount of padding that happens before it
|
||||
# due to silence_prefix and audio_delay. Normally it is ignored in detokenization,
|
||||
# but now we should account for it to find the position of the prompt transcript.
|
||||
if args.cut_prompt_transcript and audio_prompt is not None:
|
||||
prompt_frames = audio_prompt.shape[1] // mimi.frame_size
|
||||
no_prompt_offset_seconds = audio_delay_seconds + audio_silence_prefix_seconds
|
||||
no_prompt_offset = int(no_prompt_offset_seconds * mimi.frame_rate)
|
||||
text_tokens = text_tokens[prompt_frames + no_prompt_offset:]
|
||||
|
||||
text = tokenizer.decode(
|
||||
text_tokens[text_tokens > padding_token_id].numpy().tolist()
|
||||
)
|
||||
|
||||
print(text)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Example streaming STT w/ a prompt.")
|
||||
parser.add_argument(
|
||||
"--file",
|
||||
required=True,
|
||||
help="File to transcribe.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prompt_file",
|
||||
required=False,
|
||||
help="Audio of the prompt.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prompt_text",
|
||||
required=False,
|
||||
help="Text of the prompt.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cut-prompt-transcript",
|
||||
action="store_true",
|
||||
help="Cut the prompt from the output transcript",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hf-repo", type=str, help="HF repo to load the STT model from. "
|
||||
)
|
||||
parser.add_argument("--tokenizer", type=str, help="Path to a local tokenizer file.")
|
||||
parser.add_argument(
|
||||
"--moshi-weight", type=str, help="Path to a local checkpoint file."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mimi-weight", type=str, help="Path to a local checkpoint file for Mimi."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--config-path", type=str, help="Path to a local config file.", default=None
|
||||
)
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default="cuda",
|
||||
help="Device on which to run, defaults to 'cuda'.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
main(args)
|
||||
Loading…
Reference in New Issue
Block a user