Text-audio prompt example into README.md + cutting prompt transcript.
This commit is contained in:
parent
adca7c2731
commit
ebbd58dd23
16
README.md
16
README.md
|
|
@ -88,6 +88,22 @@ uv run scripts/evaluate_on_dataset.py \
|
|||
--hf-repo kyutai/stt-2.6b-en
|
||||
```
|
||||
|
||||
Another example shows how one can provide a text-, audio-, or text-audio prompt to our STT model:
|
||||
```bash
|
||||
uv run scripts/transcribe_from_file_via_pytorch_with_prompt.py \
|
||||
--hf-repo kyutai/stt-2.6b-en \
|
||||
--file bria.mp3 \
|
||||
--prompt_file ./audio/loonah.mp3 \
|
||||
--prompt_text "Loonah" \
|
||||
--cut-prompt-transcript
|
||||
```
|
||||
Produces the transcript of `bria.mp3` using the `Loonah` spelling for the name, instead of the `Luna` used without any prompt:
|
||||
```
|
||||
In the heart of an ancient forest, where the trees whispered secrets of the past, there lived a peculiar rabbit named Loonah (...)
|
||||
```
|
||||
Please bear in mind that is an experimental feature and its behavior is very sensitive to the prompt provided.
|
||||
|
||||
|
||||
### Rust server
|
||||
|
||||
<a href="https://huggingface.co/kyutai/stt-2.6b-en-candle" target="_blank" style="margin: 2px;">
|
||||
|
|
|
|||
BIN
audio/loona.mp3
Normal file
BIN
audio/loona.mp3
Normal file
Binary file not shown.
|
|
@ -14,7 +14,15 @@ import tqdm
|
|||
|
||||
|
||||
class PromptHook:
|
||||
def __init__(self, tokenizer, prefix, padding_tokens=(0, 3,)):
|
||||
def __init__(
|
||||
self,
|
||||
tokenizer,
|
||||
prefix,
|
||||
padding_tokens=(
|
||||
0,
|
||||
3,
|
||||
),
|
||||
):
|
||||
self.tokenizer = tokenizer
|
||||
self.prefix_enforce = deque(self.tokenizer.encode(prefix))
|
||||
self.padding_tokens = padding_tokens
|
||||
|
|
@ -102,10 +110,12 @@ def main(args):
|
|||
chain = [itertools.repeat(silence_chunk, n_prefix_chunks)]
|
||||
|
||||
if audio_prompt is not None:
|
||||
chain.append(torch.split(audio_prompt[:, None], mimi.frame_size, dim=-1))
|
||||
chain.append(torch.split(audio_prompt[:, None, :], mimi.frame_size, dim=-1))
|
||||
# adding a bit (0.8s) of silence to separate prompt and the actual audio
|
||||
chain.append(itertools.repeat(silence_chunk, 10))
|
||||
|
||||
chain += [
|
||||
torch.split(audio[:, None], mimi.frame_size, dim=-1),
|
||||
torch.split(audio[:, None, :], mimi.frame_size, dim=-1),
|
||||
itertools.repeat(silence_chunk, n_suffix_chunks),
|
||||
]
|
||||
|
||||
|
|
@ -121,9 +131,22 @@ def main(args):
|
|||
|
||||
utterance_tokens = torch.concat(text_tokens_accum, dim=-1)
|
||||
text_tokens = utterance_tokens.cpu().view(-1)
|
||||
|
||||
# if we have an audio prompt and we don't want to have it in the transcript,
|
||||
# we should cut the corresponding number of frames from the output tokens.
|
||||
# However, there is also some amount of padding that happens before it
|
||||
# due to silence_prefix and audio_delay. Normally it is ignored in detokenization,
|
||||
# but now we should account for it to find the position of the prompt transcript.
|
||||
if args.cut_prompt_transcript and audio_prompt is not None:
|
||||
prompt_frames = audio_prompt.shape[1] // mimi.frame_size
|
||||
no_prompt_offset_seconds = audio_delay_seconds + audio_silence_prefix_seconds
|
||||
no_prompt_offset = int(no_prompt_offset_seconds * mimi.frame_rate)
|
||||
text_tokens = text_tokens[prompt_frames + no_prompt_offset:]
|
||||
|
||||
text = tokenizer.decode(
|
||||
text_tokens[text_tokens > padding_token_id].numpy().tolist()
|
||||
)
|
||||
|
||||
print(text)
|
||||
|
||||
|
||||
|
|
@ -144,7 +167,11 @@ if __name__ == "__main__":
|
|||
required=False,
|
||||
help="Text of the prompt.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--cut-prompt-transcript",
|
||||
action="store_true",
|
||||
help="Cut the prompt from the output transcript",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hf-repo", type=str, help="HF repo to load the STT model from. "
|
||||
)
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user