Text-audio prompt example into README.md + cutting prompt transcript.

This commit is contained in:
Eugene 2025-07-02 10:53:31 +02:00
parent adca7c2731
commit ebbd58dd23
3 changed files with 47 additions and 4 deletions

View File

@ -88,6 +88,22 @@ uv run scripts/evaluate_on_dataset.py \
--hf-repo kyutai/stt-2.6b-en
```
Another example shows how one can provide a text-, audio-, or text-audio prompt to our STT model:
```bash
uv run scripts/transcribe_from_file_via_pytorch_with_prompt.py \
--hf-repo kyutai/stt-2.6b-en \
--file bria.mp3 \
--prompt_file ./audio/loonah.mp3 \
--prompt_text "Loonah" \
--cut-prompt-transcript
```
Produces the transcript of `bria.mp3` using the `Loonah` spelling for the name, instead of the `Luna` used without any prompt:
```
In the heart of an ancient forest, where the trees whispered secrets of the past, there lived a peculiar rabbit named Loonah (...)
```
Please bear in mind that is an experimental feature and its behavior is very sensitive to the prompt provided.
### Rust server
<a href="https://huggingface.co/kyutai/stt-2.6b-en-candle" target="_blank" style="margin: 2px;">

BIN
audio/loona.mp3 Normal file

Binary file not shown.

View File

@ -14,7 +14,15 @@ import tqdm
class PromptHook:
def __init__(self, tokenizer, prefix, padding_tokens=(0, 3,)):
def __init__(
self,
tokenizer,
prefix,
padding_tokens=(
0,
3,
),
):
self.tokenizer = tokenizer
self.prefix_enforce = deque(self.tokenizer.encode(prefix))
self.padding_tokens = padding_tokens
@ -102,10 +110,12 @@ def main(args):
chain = [itertools.repeat(silence_chunk, n_prefix_chunks)]
if audio_prompt is not None:
chain.append(torch.split(audio_prompt[:, None], mimi.frame_size, dim=-1))
chain.append(torch.split(audio_prompt[:, None, :], mimi.frame_size, dim=-1))
# adding a bit (0.8s) of silence to separate prompt and the actual audio
chain.append(itertools.repeat(silence_chunk, 10))
chain += [
torch.split(audio[:, None], mimi.frame_size, dim=-1),
torch.split(audio[:, None, :], mimi.frame_size, dim=-1),
itertools.repeat(silence_chunk, n_suffix_chunks),
]
@ -121,9 +131,22 @@ def main(args):
utterance_tokens = torch.concat(text_tokens_accum, dim=-1)
text_tokens = utterance_tokens.cpu().view(-1)
# if we have an audio prompt and we don't want to have it in the transcript,
# we should cut the corresponding number of frames from the output tokens.
# However, there is also some amount of padding that happens before it
# due to silence_prefix and audio_delay. Normally it is ignored in detokenization,
# but now we should account for it to find the position of the prompt transcript.
if args.cut_prompt_transcript and audio_prompt is not None:
prompt_frames = audio_prompt.shape[1] // mimi.frame_size
no_prompt_offset_seconds = audio_delay_seconds + audio_silence_prefix_seconds
no_prompt_offset = int(no_prompt_offset_seconds * mimi.frame_rate)
text_tokens = text_tokens[prompt_frames + no_prompt_offset:]
text = tokenizer.decode(
text_tokens[text_tokens > padding_token_id].numpy().tolist()
)
print(text)
@ -144,7 +167,11 @@ if __name__ == "__main__":
required=False,
help="Text of the prompt.",
)
parser.add_argument(
"--cut-prompt-transcript",
action="store_true",
help="Cut the prompt from the output transcript",
)
parser.add_argument(
"--hf-repo", type=str, help="HF repo to load the STT model from. "
)