Compare commits
3 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
236df99003 | ||
|
|
61206d78c8 | ||
|
|
aa06a44fd4 |
172
scripts/tts_mlx.py
Normal file
172
scripts/tts_mlx.py
Normal file
|
|
@ -0,0 +1,172 @@
|
|||
# /// script
|
||||
# requires-python = ">=3.12"
|
||||
# dependencies = [
|
||||
# "huggingface_hub",
|
||||
# "moshi_mlx>=0.2.8",
|
||||
# "numpy",
|
||||
# "sounddevice",
|
||||
# ]
|
||||
# ///
|
||||
|
||||
import argparse
|
||||
import json
|
||||
from pathlib import Path
|
||||
import queue
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import sentencepiece
|
||||
import sphn
|
||||
import time
|
||||
|
||||
import sounddevice as sd
|
||||
|
||||
from moshi_mlx.client_utils import make_log
|
||||
from moshi_mlx import models
|
||||
from moshi_mlx.utils.loaders import hf_get
|
||||
from moshi_mlx.models.tts import TTSModel, DEFAULT_DSM_TTS_REPO, DEFAULT_DSM_TTS_VOICE_REPO
|
||||
|
||||
|
||||
def log(level: str, msg: str):
|
||||
print(make_log(level, msg))
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(prog='moshi-tts', description='Run Moshi')
|
||||
parser.add_argument("inp", type=str, help="Input file, use - for stdin")
|
||||
parser.add_argument("out", type=str, help="Output file to generate, use - for playing the audio")
|
||||
parser.add_argument("--hf-repo", type=str, default=DEFAULT_DSM_TTS_REPO,
|
||||
help="HF repo in which to look for the pretrained models.")
|
||||
parser.add_argument("--voice-repo", default=DEFAULT_DSM_TTS_VOICE_REPO,
|
||||
help="HF repo in which to look for pre-computed voice embeddings.")
|
||||
parser.add_argument("--voice", default="expresso/ex03-ex01_happy_001_channel1_334s.wav")
|
||||
parser.add_argument("--quantize", type=int, help="The quantization to be applied, e.g. 8 for 8 bits.")
|
||||
args = parser.parse_args()
|
||||
|
||||
mx.random.seed(299792458)
|
||||
|
||||
log("info", "retrieving checkpoints")
|
||||
|
||||
raw_config = hf_get("config.json", args.hf_repo)
|
||||
with open(hf_get(raw_config), "r") as fobj:
|
||||
raw_config = json.load(fobj)
|
||||
|
||||
mimi_weights = hf_get(raw_config["mimi_name"], args.hf_repo)
|
||||
moshi_name = raw_config.get("moshi_name", "model.safetensors")
|
||||
moshi_weights = hf_get(moshi_name, args.hf_repo)
|
||||
tokenizer = hf_get(raw_config["tokenizer_name"], args.hf_repo)
|
||||
lm_config = models.LmConfig.from_config_dict(raw_config)
|
||||
model = models.Lm(lm_config)
|
||||
model.set_dtype(mx.bfloat16)
|
||||
|
||||
log("info", f"loading model weights from {moshi_weights}")
|
||||
model.load_pytorch_weights(str(moshi_weights), lm_config, strict=True)
|
||||
|
||||
if args.quantize is not None:
|
||||
log("info", f"quantizing model to {args.quantize} bits")
|
||||
nn.quantize(model.depformer, bits=args.quantize)
|
||||
for layer in model.transformer.layers:
|
||||
nn.quantize(layer.self_attn, bits=args.quantize)
|
||||
nn.quantize(layer.gating, bits=args.quantize)
|
||||
|
||||
log("info", f"loading the text tokenizer from {tokenizer}")
|
||||
text_tokenizer = sentencepiece.SentencePieceProcessor(str(tokenizer)) # type: ignore
|
||||
|
||||
log("info", f"loading the audio tokenizer {mimi_weights}")
|
||||
generated_codebooks = lm_config.generated_codebooks
|
||||
audio_tokenizer = models.mimi.Mimi(models.mimi_202407(generated_codebooks))
|
||||
audio_tokenizer.load_pytorch_weights(str(mimi_weights), strict=True)
|
||||
|
||||
cfg_coef_conditioning = None
|
||||
tts_model = TTSModel(
|
||||
model,
|
||||
audio_tokenizer,
|
||||
text_tokenizer,
|
||||
voice_repo=args.voice_repo,
|
||||
temp=0.6,
|
||||
cfg_coef=1,
|
||||
max_padding=8,
|
||||
initial_padding=2,
|
||||
final_padding=2,
|
||||
padding_bonus=0,
|
||||
raw_config=raw_config,
|
||||
)
|
||||
if tts_model.valid_cfg_conditionings:
|
||||
# Model was trained with CFG distillation.
|
||||
cfg_coef_conditioning = tts_model.cfg_coef
|
||||
tts_model.cfg_coef = 1.
|
||||
cfg_is_no_text = False
|
||||
cfg_is_no_prefix = False
|
||||
else:
|
||||
cfg_is_no_text = True
|
||||
cfg_is_no_prefix = True
|
||||
mimi = tts_model.mimi
|
||||
|
||||
log("info", f"reading input from {args.inp}")
|
||||
with open(args.inp, "r") as fobj:
|
||||
text_to_tts = fobj.read().strip()
|
||||
|
||||
all_entries = [tts_model.prepare_script([text_to_tts])]
|
||||
if tts_model.multi_speaker:
|
||||
voices = [tts_model.get_voice_path(args.voice)]
|
||||
else:
|
||||
voices = []
|
||||
all_attributes = [tts_model.make_condition_attributes(voices, cfg_coef_conditioning)]
|
||||
|
||||
wav_frames = queue.Queue()
|
||||
def _on_audio_hook(audio_tokens):
|
||||
if (audio_tokens == -1).any():
|
||||
return
|
||||
_pcm = tts_model.mimi.decode_step(audio_tokens[None, :, None])
|
||||
_pcm = np.array(mx.clip(_pcm[0, 0], -1, 1))
|
||||
wav_frames.put_nowait(_pcm)
|
||||
|
||||
def run():
|
||||
log("info", "starting the inference loop")
|
||||
begin = time.time()
|
||||
result = tts_model.generate(
|
||||
all_entries,
|
||||
all_attributes,
|
||||
cfg_is_no_prefix=cfg_is_no_prefix,
|
||||
cfg_is_no_text=cfg_is_no_text,
|
||||
on_audio_hook=_on_audio_hook,
|
||||
)
|
||||
frames = mx.concat(result.frames, axis=-1)
|
||||
total_duration = frames.shape[0] * frames.shape[-1] / mimi.frame_rate
|
||||
time_taken = time.time() - begin
|
||||
total_speed = total_duration / time_taken
|
||||
log("info", f"[LM] took {time_taken:.2f}s, total speed {total_speed:.2f}x")
|
||||
return result
|
||||
|
||||
if args.out == "-":
|
||||
def audio_callback(outdata, _a, _b, _c):
|
||||
try:
|
||||
pcm_data = wav_frames.get(block=False)
|
||||
outdata[:, 0] = pcm_data
|
||||
except queue.Empty:
|
||||
outdata[:] = 0
|
||||
with sd.OutputStream(samplerate=mimi.sample_rate,
|
||||
blocksize=1920,
|
||||
channels=1,
|
||||
callback=audio_callback):
|
||||
run()
|
||||
time.sleep(3)
|
||||
while True:
|
||||
if wav_frames.qsize() == 0:
|
||||
break
|
||||
time.sleep(1)
|
||||
else:
|
||||
frames = []
|
||||
while True:
|
||||
try:
|
||||
frames.append(wav_frames.get_nowait())
|
||||
except queue.Empty:
|
||||
break
|
||||
wav = np.concat(frames, -1)
|
||||
sphn.write_wav(args.out, wav, mimi.sample_rate)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Loading…
Reference in New Issue
Block a user