Compare commits
4 Commits
main
...
tts-mlx-st
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
00daf19074 | ||
|
|
45f01cc617 | ||
|
|
00b856a94d | ||
|
|
64c7d55cdb |
|
|
@ -2,7 +2,7 @@
|
|||
# requires-python = ">=3.12"
|
||||
# dependencies = [
|
||||
# "huggingface_hub",
|
||||
# "moshi_mlx==0.2.9",
|
||||
# "moshi_mlx==0.2.11",
|
||||
# "numpy",
|
||||
# "sounddevice",
|
||||
# ]
|
||||
|
|
@ -36,7 +36,7 @@ def log(level: str, msg: str):
|
|||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Run Kyutai TTS using the PyTorch implementation"
|
||||
description="Run Kyutai TTS using the MLX implementation"
|
||||
)
|
||||
parser.add_argument("inp", type=str, help="Input file, use - for stdin")
|
||||
parser.add_argument(
|
||||
|
|
|
|||
314
scripts/tts_mlx_streaming.py
Normal file
314
scripts/tts_mlx_streaming.py
Normal file
|
|
@ -0,0 +1,314 @@
|
|||
# /// script
|
||||
# requires-python = ">=3.12"
|
||||
# dependencies = [
|
||||
# "huggingface_hub",
|
||||
# "moshi_mlx==0.2.11",
|
||||
# "numpy",
|
||||
# "sounddevice",
|
||||
# ]
|
||||
# ///
|
||||
|
||||
import argparse
|
||||
from dataclasses import dataclass
|
||||
import json
|
||||
import queue
|
||||
import sys
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
import sentencepiece
|
||||
import sounddevice as sd
|
||||
import sphn
|
||||
import typing as tp
|
||||
from moshi_mlx import models
|
||||
from moshi_mlx.models.generate import LmGen
|
||||
from moshi_mlx.client_utils import make_log
|
||||
from moshi_mlx.modules.conditioner import (
|
||||
ConditionAttributes,
|
||||
ConditionTensor,
|
||||
dropout_all_conditions,
|
||||
)
|
||||
from moshi_mlx.utils.sampling import Sampler
|
||||
from moshi_mlx.models.tts import (
|
||||
Entry,
|
||||
DEFAULT_DSM_TTS_REPO,
|
||||
DEFAULT_DSM_TTS_VOICE_REPO,
|
||||
TTSModel,
|
||||
script_to_entries,
|
||||
)
|
||||
from moshi_mlx.utils.loaders import hf_get
|
||||
|
||||
|
||||
def prepare_script(model: TTSModel, script: str, first_turn: bool) -> list[Entry]:
|
||||
multi_speaker = first_turn and model.multi_speaker
|
||||
return script_to_entries(
|
||||
model.tokenizer,
|
||||
model.machine.token_ids,
|
||||
model.mimi.frame_rate,
|
||||
[script],
|
||||
multi_speaker=multi_speaker,
|
||||
padding_between=1,
|
||||
)
|
||||
|
||||
|
||||
def _make_null(
|
||||
all_attributes: tp.Sequence[ConditionAttributes],
|
||||
) -> list[ConditionAttributes]:
|
||||
# When using CFG, returns the null conditions.
|
||||
return dropout_all_conditions(all_attributes)
|
||||
|
||||
|
||||
@dataclass
|
||||
class TTSGen:
|
||||
tts_model: TTSModel
|
||||
attributes: tp.Sequence[ConditionAttributes]
|
||||
on_frame: tp.Optional[tp.Callable[[mx.array], None]] = None
|
||||
|
||||
def __post_init__(self):
|
||||
tts_model = self.tts_model
|
||||
attributes = self.attributes
|
||||
self.offset = 0
|
||||
self.state = self.tts_model.machine.new_state([])
|
||||
|
||||
if tts_model.cfg_coef != 1.0:
|
||||
if tts_model.valid_cfg_conditionings:
|
||||
raise ValueError(
|
||||
"This model does not support direct CFG, but was trained with "
|
||||
"CFG distillation. Pass instead `cfg_coef` to `make_condition_attributes`."
|
||||
)
|
||||
nulled = _make_null(attributes)
|
||||
attributes = list(attributes) + nulled
|
||||
|
||||
assert tts_model.lm.condition_provider is not None
|
||||
self.ct = None
|
||||
self.cross_attention_src = None
|
||||
for _attr in attributes:
|
||||
for _key, _value in _attr.text.items():
|
||||
_ct = tts_model.lm.condition_provider.condition_tensor(_key, _value)
|
||||
if self.ct is None:
|
||||
self.ct = _ct
|
||||
else:
|
||||
self.ct = ConditionTensor(self.ct.tensor + _ct.tensor)
|
||||
for _key, _value in _attr.tensor.items():
|
||||
_conditioner = tts_model.lm.condition_provider.conditioners[_key]
|
||||
_ca_src = _conditioner.condition(_value)
|
||||
if self.cross_attention_src is None:
|
||||
self.cross_attention_src = _ca_src
|
||||
else:
|
||||
raise ValueError("multiple cross-attention conditioners")
|
||||
|
||||
def _on_audio_hook(audio_tokens):
|
||||
delays = tts_model.lm.delays
|
||||
for q in range(audio_tokens.shape[0]):
|
||||
delay = delays[q]
|
||||
if self.offset < delay + tts_model.delay_steps:
|
||||
audio_tokens[q] = tts_model.machine.token_ids.zero
|
||||
|
||||
def _on_text_hook(text_tokens):
|
||||
tokens = text_tokens.tolist()
|
||||
out_tokens = []
|
||||
for token in tokens:
|
||||
out_token, _ = tts_model.machine.process(self.offset, self.state, token)
|
||||
out_tokens.append(out_token)
|
||||
text_tokens[:] = mx.array(out_tokens, dtype=mx.int64)
|
||||
|
||||
self.lm_gen = LmGen(
|
||||
tts_model.lm,
|
||||
max_steps=tts_model.max_gen_length,
|
||||
text_sampler=Sampler(temp=tts_model.temp),
|
||||
audio_sampler=Sampler(temp=tts_model.temp),
|
||||
cfg_coef=tts_model.cfg_coef,
|
||||
on_text_hook=_on_text_hook,
|
||||
on_audio_hook=_on_audio_hook,
|
||||
# TODO(laurent):
|
||||
# cfg_is_masked_until=cfg_is_masked_until,
|
||||
# cfg_is_no_text=cfg_is_no_text,
|
||||
)
|
||||
|
||||
def process_last(self):
|
||||
while len(self.state.entries) > 0 or self.state.end_step is not None:
|
||||
self._step()
|
||||
additional_steps = (
|
||||
self.tts_model.delay_steps + max(self.tts_model.lm.delays) + 8
|
||||
)
|
||||
for _ in range(additional_steps):
|
||||
self._step()
|
||||
|
||||
def process(self):
|
||||
while len(self.state.entries) > self.tts_model.machine.second_stream_ahead:
|
||||
self._step()
|
||||
|
||||
def _step(self):
|
||||
missing = self.tts_model.lm.n_q - self.tts_model.lm.dep_q
|
||||
missing = self.tts_model.lm.n_q - self.tts_model.lm.dep_q
|
||||
input_tokens = (
|
||||
mx.ones((1, missing), dtype=mx.int64)
|
||||
* self.tts_model.machine.token_ids.zero
|
||||
)
|
||||
self.lm_gen.step(
|
||||
input_tokens, ct=self.ct, cross_attention_src=self.cross_attention_src
|
||||
)
|
||||
frame = self.lm_gen.last_audio_tokens()
|
||||
self.offset += 1
|
||||
if frame is not None:
|
||||
if self.on_frame is not None:
|
||||
self.on_frame(frame)
|
||||
|
||||
def append_entry(self, entry):
|
||||
self.state.entries.append(entry)
|
||||
|
||||
|
||||
def log(level: str, msg: str):
|
||||
print(make_log(level, msg))
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Run Kyutai TTS using the MLX implementation"
|
||||
)
|
||||
parser.add_argument(
|
||||
"out", type=str, help="Output file to generate, use - for playing the audio"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hf-repo",
|
||||
type=str,
|
||||
default=DEFAULT_DSM_TTS_REPO,
|
||||
help="HF repo in which to look for the pretrained models.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--voice-repo",
|
||||
default=DEFAULT_DSM_TTS_VOICE_REPO,
|
||||
help="HF repo in which to look for pre-computed voice embeddings.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--voice", default="expresso/ex03-ex01_happy_001_channel1_334s.wav"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--quantize",
|
||||
type=int,
|
||||
help="The quantization to be applied, e.g. 8 for 8 bits.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
mx.random.seed(299792458)
|
||||
|
||||
log("info", "retrieving checkpoints")
|
||||
|
||||
raw_config = hf_get("config.json", args.hf_repo)
|
||||
with open(hf_get(raw_config), "r") as fobj:
|
||||
raw_config = json.load(fobj)
|
||||
|
||||
mimi_weights = hf_get(raw_config["mimi_name"], args.hf_repo)
|
||||
moshi_name = raw_config.get("moshi_name", "model.safetensors")
|
||||
moshi_weights = hf_get(moshi_name, args.hf_repo)
|
||||
tokenizer = hf_get(raw_config["tokenizer_name"], args.hf_repo)
|
||||
lm_config = models.LmConfig.from_config_dict(raw_config)
|
||||
model = models.Lm(lm_config)
|
||||
model.set_dtype(mx.bfloat16)
|
||||
|
||||
log("info", f"loading model weights from {moshi_weights}")
|
||||
model.load_pytorch_weights(str(moshi_weights), lm_config, strict=True)
|
||||
|
||||
if args.quantize is not None:
|
||||
log("info", f"quantizing model to {args.quantize} bits")
|
||||
nn.quantize(model.depformer, bits=args.quantize)
|
||||
for layer in model.transformer.layers:
|
||||
nn.quantize(layer.self_attn, bits=args.quantize)
|
||||
nn.quantize(layer.gating, bits=args.quantize)
|
||||
|
||||
log("info", f"loading the text tokenizer from {tokenizer}")
|
||||
text_tokenizer = sentencepiece.SentencePieceProcessor(str(tokenizer)) # type: ignore
|
||||
|
||||
log("info", f"loading the audio tokenizer {mimi_weights}")
|
||||
generated_codebooks = lm_config.generated_codebooks
|
||||
audio_tokenizer = models.mimi.Mimi(models.mimi_202407(generated_codebooks))
|
||||
audio_tokenizer.load_pytorch_weights(str(mimi_weights), strict=True)
|
||||
|
||||
cfg_coef_conditioning = None
|
||||
tts_model = TTSModel(
|
||||
model,
|
||||
audio_tokenizer,
|
||||
text_tokenizer,
|
||||
voice_repo=args.voice_repo,
|
||||
temp=0.6,
|
||||
cfg_coef=1,
|
||||
max_padding=8,
|
||||
initial_padding=2,
|
||||
final_padding=2,
|
||||
padding_bonus=0,
|
||||
raw_config=raw_config,
|
||||
)
|
||||
if tts_model.valid_cfg_conditionings:
|
||||
# Model was trained with CFG distillation.
|
||||
cfg_coef_conditioning = tts_model.cfg_coef
|
||||
tts_model.cfg_coef = 1.0
|
||||
mimi = tts_model.mimi
|
||||
|
||||
log("info", "reading input from stdin")
|
||||
|
||||
if tts_model.multi_speaker:
|
||||
voices = [tts_model.get_voice_path(args.voice)]
|
||||
else:
|
||||
voices = []
|
||||
all_attributes = [
|
||||
tts_model.make_condition_attributes(voices, cfg_coef_conditioning)
|
||||
]
|
||||
|
||||
wav_frames = queue.Queue()
|
||||
|
||||
def _on_frame(frame):
|
||||
if (frame == -1).any():
|
||||
return
|
||||
_pcm = tts_model.mimi.decode_step(frame[:, :, None])
|
||||
_pcm = np.array(mx.clip(_pcm[0, 0], -1, 1))
|
||||
wav_frames.put_nowait(_pcm)
|
||||
|
||||
gen = TTSGen(tts_model, all_attributes, on_frame=_on_frame)
|
||||
|
||||
def run():
|
||||
log("info", "starting the inference loop")
|
||||
first_turn = True
|
||||
for line in sys.stdin:
|
||||
entries = prepare_script(tts_model, line.strip(), first_turn=first_turn)
|
||||
first_turn = False
|
||||
for entry in entries:
|
||||
gen.append_entry(entry)
|
||||
gen.process()
|
||||
gen.process_last()
|
||||
|
||||
if args.out == "-":
|
||||
|
||||
def audio_callback(outdata, _a, _b, _c):
|
||||
try:
|
||||
pcm_data = wav_frames.get(block=False)
|
||||
outdata[:, 0] = pcm_data
|
||||
except queue.Empty:
|
||||
outdata[:] = 0
|
||||
|
||||
with sd.OutputStream(
|
||||
samplerate=mimi.sample_rate,
|
||||
blocksize=1920,
|
||||
channels=1,
|
||||
callback=audio_callback,
|
||||
):
|
||||
run()
|
||||
while True:
|
||||
if wav_frames.qsize() == 0:
|
||||
break
|
||||
time.sleep(1)
|
||||
else:
|
||||
run()
|
||||
frames = []
|
||||
while True:
|
||||
try:
|
||||
frames.append(wav_frames.get_nowait())
|
||||
except queue.Empty:
|
||||
break
|
||||
wav = np.concat(frames, -1)
|
||||
sphn.write_wav(args.out, wav, mimi.sample_rate)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Loading…
Reference in New Issue
Block a user