Compare commits
3 Commits
main
...
streaming-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
a1af3a78cb | ||
|
|
ecc002f7af | ||
|
|
94e271b69a |
|
|
@ -1,298 +0,0 @@
|
||||||
#!/usr/bin/env python3
|
|
||||||
"""
|
|
||||||
OpenAI-Compatible Kyutai TTS API Server with Model Caching
|
|
||||||
Improved version that loads the model once and keeps it in memory
|
|
||||||
"""
|
|
||||||
|
|
||||||
import os
|
|
||||||
import io
|
|
||||||
import time
|
|
||||||
import asyncio
|
|
||||||
import subprocess
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Optional, Literal
|
|
||||||
import logging
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import soundfile as sf
|
|
||||||
from fastapi import FastAPI, HTTPException
|
|
||||||
from fastapi.responses import Response
|
|
||||||
from fastapi.middleware.cors import CORSMiddleware
|
|
||||||
from pydantic import BaseModel, Field
|
|
||||||
import uvicorn
|
|
||||||
|
|
||||||
# Configure logging
|
|
||||||
logging.basicConfig(level=logging.INFO)
|
|
||||||
logger = logging.getLogger(__name__)
|
|
||||||
|
|
||||||
# Global model variables - loaded once at startup
|
|
||||||
tts_model = None
|
|
||||||
device = None
|
|
||||||
sample_rate = None
|
|
||||||
|
|
||||||
class SpeechRequest(BaseModel):
|
|
||||||
model: Literal["tts-1", "tts-1-hd"] = Field("tts-1", description="TTS model to use")
|
|
||||||
input: str = Field(..., min_length=1, max_length=4096, description="Text to generate audio for")
|
|
||||||
voice: Literal["alloy", "echo", "fable", "onyx", "nova", "shimmer"] = Field("alloy", description="Voice to use")
|
|
||||||
response_format: Literal["mp3", "opus", "aac", "flac", "wav", "pcm"] = Field("mp3", description="Audio format")
|
|
||||||
speed: Optional[float] = Field(1.0, ge=0.25, le=4.0, description="Speed of generated audio")
|
|
||||||
|
|
||||||
app = FastAPI(
|
|
||||||
title="OpenAI-Compatible TTS API (Cached)",
|
|
||||||
description="OpenAI Audio Speech API compatible endpoint using Kyutai TTS with model caching",
|
|
||||||
version="2.0.0"
|
|
||||||
)
|
|
||||||
|
|
||||||
app.add_middleware(
|
|
||||||
CORSMiddleware,
|
|
||||||
allow_origins=["*"],
|
|
||||||
allow_credentials=True,
|
|
||||||
allow_methods=["*"],
|
|
||||||
allow_headers=["*"],
|
|
||||||
)
|
|
||||||
|
|
||||||
OUTPUT_DIR = Path("/app/api_output")
|
|
||||||
OUTPUT_DIR.mkdir(exist_ok=True)
|
|
||||||
|
|
||||||
def load_tts_model():
|
|
||||||
"""Load TTS model once at startup and keep in memory"""
|
|
||||||
global tts_model, device, sample_rate
|
|
||||||
|
|
||||||
if tts_model is not None:
|
|
||||||
logger.info("TTS model already loaded")
|
|
||||||
return
|
|
||||||
|
|
||||||
try:
|
|
||||||
logger.info("🚀 Loading Kyutai TTS model (one-time initialization)...")
|
|
||||||
|
|
||||||
# Import Kyutai TTS modules
|
|
||||||
from moshi.models.loaders import CheckpointInfo
|
|
||||||
from moshi.models.tts import DEFAULT_DSM_TTS_REPO, TTSModel
|
|
||||||
|
|
||||||
# Set device
|
|
||||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
||||||
logger.info(f"Using device: {device}")
|
|
||||||
|
|
||||||
# Load the TTS model
|
|
||||||
checkpoint_info = CheckpointInfo.from_hf_repo(DEFAULT_DSM_TTS_REPO)
|
|
||||||
|
|
||||||
tts_model = TTSModel.from_checkpoint_info(
|
|
||||||
checkpoint_info,
|
|
||||||
n_q=32,
|
|
||||||
temp=0.6,
|
|
||||||
device=device
|
|
||||||
)
|
|
||||||
|
|
||||||
# Get sample rate
|
|
||||||
sample_rate = tts_model.mimi.sample_rate
|
|
||||||
|
|
||||||
logger.info(f"✅ TTS model loaded successfully!")
|
|
||||||
logger.info(f" Model: {DEFAULT_DSM_TTS_REPO}")
|
|
||||||
logger.info(f" Device: {device}")
|
|
||||||
logger.info(f" Sample Rate: {sample_rate}")
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"❌ Failed to load TTS model: {e}")
|
|
||||||
raise
|
|
||||||
|
|
||||||
def generate_audio_fast(text: str, voice: str = "alloy", speed: float = 1.0) -> bytes:
|
|
||||||
"""Generate audio using cached TTS model"""
|
|
||||||
global tts_model, device, sample_rate
|
|
||||||
|
|
||||||
if tts_model is None:
|
|
||||||
raise HTTPException(status_code=500, detail="TTS model not loaded")
|
|
||||||
|
|
||||||
try:
|
|
||||||
logger.info(f"🎵 Generating audio for: '{text[:50]}{'...' if len(text) > 50 else ''}'")
|
|
||||||
|
|
||||||
# Prepare the script (text input)
|
|
||||||
entries = tts_model.prepare_script([text], padding_between=1)
|
|
||||||
|
|
||||||
# Voice mapping for OpenAI compatibility
|
|
||||||
voice_mapping = {
|
|
||||||
"alloy": "expresso/ex03-ex01_happy_001_channel1_334s.wav",
|
|
||||||
"echo": "expresso/ex04-ex01_happy_001_channel1_334s.wav",
|
|
||||||
"fable": "expresso/ex05-ex01_happy_001_channel1_334s.wav",
|
|
||||||
"onyx": "expresso/ex06-ex01_happy_001_channel1_334s.wav",
|
|
||||||
"nova": "expresso/ex07-ex01_happy_001_channel1_334s.wav",
|
|
||||||
"shimmer": "expresso/ex08-ex01_happy_001_channel1_334s.wav"
|
|
||||||
}
|
|
||||||
|
|
||||||
selected_voice = voice_mapping.get(voice, voice_mapping["alloy"])
|
|
||||||
|
|
||||||
try:
|
|
||||||
voice_path = tts_model.get_voice_path(selected_voice)
|
|
||||||
except:
|
|
||||||
# Fallback to default if voice not found
|
|
||||||
voice_path = tts_model.get_voice_path("expresso/ex03-ex01_happy_001_channel1_334s.wav")
|
|
||||||
|
|
||||||
# Prepare condition attributes
|
|
||||||
condition_attributes = tts_model.make_condition_attributes(
|
|
||||||
[voice_path], cfg_coef=2.0
|
|
||||||
)
|
|
||||||
|
|
||||||
# Generate audio
|
|
||||||
pcms = []
|
|
||||||
|
|
||||||
def on_frame(frame):
|
|
||||||
if (frame != -1).all():
|
|
||||||
pcm = tts_model.mimi.decode(frame[:, 1:, :]).cpu().numpy()
|
|
||||||
pcms.append(torch.clamp(torch.from_numpy(pcm[0, 0]), -1, 1).numpy())
|
|
||||||
|
|
||||||
all_entries = [entries]
|
|
||||||
all_condition_attributes = [condition_attributes]
|
|
||||||
|
|
||||||
with tts_model.mimi.streaming(len(all_entries)):
|
|
||||||
result = tts_model.generate(all_entries, all_condition_attributes, on_frame=on_frame)
|
|
||||||
|
|
||||||
# Concatenate all audio frames
|
|
||||||
if pcms:
|
|
||||||
import numpy as np
|
|
||||||
audio = np.concatenate(pcms, axis=-1)
|
|
||||||
|
|
||||||
# Apply speed adjustment if needed
|
|
||||||
if speed != 1.0:
|
|
||||||
# Simple speed adjustment by resampling
|
|
||||||
from scipy import signal
|
|
||||||
audio_length = len(audio)
|
|
||||||
new_length = int(audio_length / speed)
|
|
||||||
audio = signal.resample(audio, new_length)
|
|
||||||
|
|
||||||
# Convert to bytes
|
|
||||||
audio_bytes = io.BytesIO()
|
|
||||||
sf.write(audio_bytes, audio, samplerate=sample_rate, format='WAV')
|
|
||||||
audio_bytes.seek(0)
|
|
||||||
|
|
||||||
logger.info(f"✅ Audio generated successfully ({len(audio)/sample_rate:.2f}s)")
|
|
||||||
return audio_bytes.read()
|
|
||||||
else:
|
|
||||||
raise Exception("No audio frames generated")
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"❌ TTS generation error: {e}")
|
|
||||||
raise HTTPException(status_code=500, detail=f"Audio generation failed: {str(e)}")
|
|
||||||
|
|
||||||
def convert_audio_format(audio_wav_bytes: bytes, output_format: str) -> bytes:
|
|
||||||
"""Convert WAV audio to requested format using ffmpeg"""
|
|
||||||
try:
|
|
||||||
if output_format == "wav":
|
|
||||||
return audio_wav_bytes
|
|
||||||
|
|
||||||
# Use ffmpeg to convert
|
|
||||||
cmd = ["ffmpeg", "-f", "wav", "-i", "pipe:0", "-f", output_format, "pipe:1"]
|
|
||||||
|
|
||||||
result = subprocess.run(
|
|
||||||
cmd,
|
|
||||||
input=audio_wav_bytes,
|
|
||||||
capture_output=True,
|
|
||||||
check=True
|
|
||||||
)
|
|
||||||
return result.stdout
|
|
||||||
|
|
||||||
except subprocess.CalledProcessError as e:
|
|
||||||
logger.error(f"Audio conversion failed: {e}")
|
|
||||||
raise HTTPException(status_code=500, detail=f"Audio conversion failed: {e}")
|
|
||||||
|
|
||||||
@app.post("/v1/audio/speech")
|
|
||||||
async def create_speech(request: SpeechRequest):
|
|
||||||
"""
|
|
||||||
OpenAI-compatible audio speech endpoint
|
|
||||||
Uses cached TTS model for fast generation
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
start_time = time.time()
|
|
||||||
|
|
||||||
# Generate audio with cached model
|
|
||||||
audio_wav_bytes = generate_audio_fast(
|
|
||||||
text=request.input,
|
|
||||||
voice=request.voice,
|
|
||||||
speed=request.speed
|
|
||||||
)
|
|
||||||
|
|
||||||
# Convert to requested format
|
|
||||||
audio_data = convert_audio_format(audio_wav_bytes, request.response_format)
|
|
||||||
|
|
||||||
generation_time = time.time() - start_time
|
|
||||||
logger.info(f"⚡ Total generation time: {generation_time:.2f}s")
|
|
||||||
|
|
||||||
# Set appropriate content type
|
|
||||||
content_types = {
|
|
||||||
"mp3": "audio/mpeg",
|
|
||||||
"opus": "audio/opus",
|
|
||||||
"aac": "audio/aac",
|
|
||||||
"flac": "audio/flac",
|
|
||||||
"wav": "audio/wav",
|
|
||||||
"pcm": "audio/pcm"
|
|
||||||
}
|
|
||||||
|
|
||||||
return Response(
|
|
||||||
content=audio_data,
|
|
||||||
media_type=content_types.get(request.response_format, "audio/wav"),
|
|
||||||
headers={
|
|
||||||
"Content-Disposition": f"attachment; filename=speech.{request.response_format}",
|
|
||||||
"X-Generation-Time": str(generation_time)
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"Speech generation failed: {e}")
|
|
||||||
raise HTTPException(status_code=500, detail=str(e))
|
|
||||||
|
|
||||||
@app.get("/v1/models")
|
|
||||||
async def list_models():
|
|
||||||
"""List available models (OpenAI-compatible)"""
|
|
||||||
return {
|
|
||||||
"object": "list",
|
|
||||||
"data": [
|
|
||||||
{
|
|
||||||
"id": "tts-1",
|
|
||||||
"object": "model",
|
|
||||||
"created": 1677610602,
|
|
||||||
"owned_by": "kyutai",
|
|
||||||
"permission": [],
|
|
||||||
"root": "tts-1",
|
|
||||||
"parent": None
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"id": "tts-1-hd",
|
|
||||||
"object": "model",
|
|
||||||
"created": 1677610602,
|
|
||||||
"owned_by": "kyutai",
|
|
||||||
"permission": [],
|
|
||||||
"root": "tts-1-hd",
|
|
||||||
"parent": None
|
|
||||||
}
|
|
||||||
]
|
|
||||||
}
|
|
||||||
|
|
||||||
@app.get("/health")
|
|
||||||
async def health_check():
|
|
||||||
"""Health check endpoint with model status"""
|
|
||||||
model_loaded = tts_model is not None
|
|
||||||
return {
|
|
||||||
"status": "healthy" if model_loaded else "loading",
|
|
||||||
"model_loaded": model_loaded,
|
|
||||||
"cuda_available": torch.cuda.is_available(),
|
|
||||||
"device": str(device) if device else None,
|
|
||||||
"service": "kyutai-tts-openai-compatible-cached"
|
|
||||||
}
|
|
||||||
|
|
||||||
@app.get("/reload-model")
|
|
||||||
async def reload_model():
|
|
||||||
"""Reload the TTS model (admin endpoint)"""
|
|
||||||
global tts_model
|
|
||||||
try:
|
|
||||||
tts_model = None
|
|
||||||
load_tts_model()
|
|
||||||
return {"status": "success", "message": "Model reloaded successfully"}
|
|
||||||
except Exception as e:
|
|
||||||
return {"status": "error", "message": str(e)}
|
|
||||||
|
|
||||||
@app.on_event("startup")
|
|
||||||
async def startup_event():
|
|
||||||
"""Load model on startup"""
|
|
||||||
logger.info("🚀 Starting TTS API server with model caching...")
|
|
||||||
load_tts_model()
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
||||||
|
|
@ -1,67 +0,0 @@
|
||||||
#!/usr/bin/env python3
|
|
||||||
"""
|
|
||||||
Check if all Kyutai TTS dependencies are properly installed
|
|
||||||
"""
|
|
||||||
|
|
||||||
import sys
|
|
||||||
|
|
||||||
def check_dependencies():
|
|
||||||
print("🔍 Checking Kyutai TTS Dependencies")
|
|
||||||
print("=" * 40)
|
|
||||||
|
|
||||||
dependencies = [
|
|
||||||
"torch",
|
|
||||||
"numpy",
|
|
||||||
"einops",
|
|
||||||
"transformers",
|
|
||||||
"accelerate",
|
|
||||||
"soundfile",
|
|
||||||
"librosa",
|
|
||||||
"huggingface_hub",
|
|
||||||
"moshi",
|
|
||||||
"sphn"
|
|
||||||
]
|
|
||||||
|
|
||||||
missing = []
|
|
||||||
installed = []
|
|
||||||
|
|
||||||
for dep in dependencies:
|
|
||||||
try:
|
|
||||||
__import__(dep)
|
|
||||||
installed.append(dep)
|
|
||||||
print(f"✓ {dep}")
|
|
||||||
except ImportError as e:
|
|
||||||
missing.append((dep, str(e)))
|
|
||||||
print(f"✗ {dep}: {e}")
|
|
||||||
|
|
||||||
print(f"\n📊 Summary:")
|
|
||||||
print(f"✓ Installed: {len(installed)}")
|
|
||||||
print(f"✗ Missing: {len(missing)}")
|
|
||||||
|
|
||||||
if missing:
|
|
||||||
print(f"\n🔧 To fix missing dependencies:")
|
|
||||||
for dep, error in missing:
|
|
||||||
print(f"pip install {dep}")
|
|
||||||
|
|
||||||
print(f"\n🧪 Testing Kyutai TTS imports:")
|
|
||||||
try:
|
|
||||||
from moshi.models.loaders import CheckpointInfo
|
|
||||||
print("✓ CheckpointInfo import successful")
|
|
||||||
except Exception as e:
|
|
||||||
print(f"✗ CheckpointInfo import failed: {e}")
|
|
||||||
|
|
||||||
try:
|
|
||||||
from moshi.models.tts import DEFAULT_DSM_TTS_REPO, DEFAULT_DSM_TTS_VOICE_REPO, TTSModel
|
|
||||||
print("✓ TTSModel imports successful")
|
|
||||||
except Exception as e:
|
|
||||||
print(f"✗ TTSModel imports failed: {e}")
|
|
||||||
|
|
||||||
return len(missing) == 0
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
success = check_dependencies()
|
|
||||||
if success:
|
|
||||||
print("\n🎉 All dependencies are installed correctly!")
|
|
||||||
else:
|
|
||||||
print("\n❌ Some dependencies are missing. Please install them first.")
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
@ -1,59 +0,0 @@
|
||||||
#!/usr/bin/env python3
|
|
||||||
"""
|
|
||||||
Kyutai TTS PyTorch Runner
|
|
||||||
Dockerized implementation for text-to-speech generation
|
|
||||||
"""
|
|
||||||
import sys
|
|
||||||
import os
|
|
||||||
import argparse
|
|
||||||
import torch
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
def main():
|
|
||||||
parser = argparse.ArgumentParser(description='Kyutai TTS PyTorch Runner')
|
|
||||||
parser.add_argument('input_file', help='Input text file or "-" for stdin')
|
|
||||||
parser.add_argument('output_file', help='Output audio file')
|
|
||||||
parser.add_argument('--model', default='kyutai/tts-1.6b-en_fr', help='TTS model to use')
|
|
||||||
parser.add_argument('--device', default='cuda' if torch.cuda.is_available() else 'cpu', help='Device to use')
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
print(f"Using device: {args.device}")
|
|
||||||
print(f"CUDA available: {torch.cuda.is_available()}")
|
|
||||||
|
|
||||||
# Handle stdin input
|
|
||||||
if args.input_file == '-':
|
|
||||||
# Read from stdin and create temporary file
|
|
||||||
text = sys.stdin.read().strip()
|
|
||||||
temp_file = '/tmp/temp_input.txt'
|
|
||||||
with open(temp_file, 'w') as f:
|
|
||||||
f.write(text)
|
|
||||||
input_file = temp_file
|
|
||||||
else:
|
|
||||||
input_file = args.input_file
|
|
||||||
|
|
||||||
# Check if the original TTS script exists
|
|
||||||
tts_script = Path('/app/scripts/tts_pytorch.py')
|
|
||||||
if tts_script.exists():
|
|
||||||
print("Using original TTS script from Kyutai repository")
|
|
||||||
import subprocess
|
|
||||||
cmd = ['python', str(tts_script), input_file, args.output_file]
|
|
||||||
subprocess.run(cmd, check=True)
|
|
||||||
else:
|
|
||||||
print("Using moshi package for TTS generation")
|
|
||||||
import subprocess
|
|
||||||
cmd = [
|
|
||||||
'python', '-m', 'moshi.run_inference',
|
|
||||||
'--hf-repo', args.model,
|
|
||||||
input_file,
|
|
||||||
args.output_file
|
|
||||||
]
|
|
||||||
result = subprocess.run(cmd, capture_output=True, text=True)
|
|
||||||
if result.returncode != 0:
|
|
||||||
print(f"Error: {result.stderr}")
|
|
||||||
sys.exit(1)
|
|
||||||
print(f"Audio generated: {args.output_file}")
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
main()
|
|
||||||
EOF
|
|
||||||
78
install.sh
78
install.sh
|
|
@ -1,78 +0,0 @@
|
||||||
# Set environment variables
|
|
||||||
export DEBIAN_FRONTEND=noninteractive
|
|
||||||
export PYTHONUNBUFFERED=1
|
|
||||||
export CUDA_VISIBLE_DEVICES=0
|
|
||||||
|
|
||||||
# Install system dependencies
|
|
||||||
apt-get update && apt-get install -y \
|
|
||||||
wget \
|
|
||||||
curl \
|
|
||||||
git \
|
|
||||||
build-essential \
|
|
||||||
libsndfile1 \
|
|
||||||
ffmpeg \
|
|
||||||
sox \
|
|
||||||
alsa-utils \
|
|
||||||
pulseaudio \
|
|
||||||
&& rm -rf /var/lib/apt/lists/*
|
|
||||||
|
|
||||||
|
|
||||||
# Install Python dependencies first (for better caching)
|
|
||||||
pip install --no-cache-dir --upgrade pip
|
|
||||||
|
|
||||||
# Create virtual environment
|
|
||||||
apt install python3.12-venv python3.12-dev
|
|
||||||
python3.12 -m venv ~/venv-tts-kyutai
|
|
||||||
source ~/venv-tts-kyutai/bin/activate
|
|
||||||
|
|
||||||
# Install Python dependencies first (for better caching)
|
|
||||||
pip install --no-cache-dir --upgrade pip
|
|
||||||
|
|
||||||
# Install PyTorch with CUDA support for Python 3.12
|
|
||||||
pip install --no-cache-dir torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124
|
|
||||||
|
|
||||||
# Install core dependencies
|
|
||||||
pip install --no-cache-dir \
|
|
||||||
numpy \
|
|
||||||
scipy \
|
|
||||||
librosa \
|
|
||||||
soundfile \
|
|
||||||
huggingface_hub \
|
|
||||||
einops \
|
|
||||||
transformers \
|
|
||||||
accelerate
|
|
||||||
|
|
||||||
# Install API dependencies
|
|
||||||
pip install --no-cache-dir \
|
|
||||||
fastapi \
|
|
||||||
uvicorn[standard] \
|
|
||||||
python-multipart \
|
|
||||||
pydantic
|
|
||||||
|
|
||||||
# Install moshi package with all dependencies (following Colab notebook)
|
|
||||||
pip install --no-cache-dir 'sphn<0.2'
|
|
||||||
pip install --no-cache-dir "moshi==0.2.8"
|
|
||||||
|
|
||||||
# Create directories for input/output
|
|
||||||
mkdir -p /app/input /app/output /app/scripts /app/api_output
|
|
||||||
|
|
||||||
# Download the Kyutai delayed-streams-modeling repository
|
|
||||||
#git clone https://github.com/kyutai-labs/delayed-streams-modeling.git /app/kyutai-repo
|
|
||||||
|
|
||||||
# Copy the TTS script from the repository
|
|
||||||
cp /app/kyutai-repo/scripts/tts_pytorch.py /app/scripts/ || echo "TTS script not found, will create custom one"
|
|
||||||
|
|
||||||
# Create directories for input/output
|
|
||||||
mkdir -p /app/input /app/output /app/scripts /app/api_output
|
|
||||||
|
|
||||||
# Download the Kyutai delayed-streams-modeling repository
|
|
||||||
#git clone https://github.com/kyutai-labs/delayed-streams-modeling.git /app/kyutai-repo
|
|
||||||
|
|
||||||
# Copy the TTS script from the repository
|
|
||||||
cp scripts/tts_pytorch.py /app/scripts/ || echo "TTS script not found, will create custom one"
|
|
||||||
|
|
||||||
# Create directories for input/output
|
|
||||||
mkdir -p /app/input /app/output /app/scripts /app/api_output
|
|
||||||
|
|
||||||
# Start TTS-Server
|
|
||||||
python /app/api_server.py
|
|
||||||
|
|
@ -24,18 +24,13 @@ if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument("in_file", help="The file to transcribe.")
|
parser.add_argument("in_file", help="The file to transcribe.")
|
||||||
parser.add_argument("--max-steps", default=4096)
|
parser.add_argument("--max-steps", default=4096)
|
||||||
parser.add_argument("--hf-repo")
|
parser.add_argument("--hf-repo", default="kyutai/stt-1b-en_fr-mlx")
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--vad", action="store_true", help="Enable VAD (Voice Activity Detection)."
|
"--vad", action="store_true", help="Enable VAD (Voice Activity Detection)."
|
||||||
)
|
)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
audio, _ = sphn.read(args.in_file, sample_rate=24000)
|
audio, _ = sphn.read(args.in_file, sample_rate=24000)
|
||||||
if args.hf_repo is None:
|
|
||||||
if args.vad:
|
|
||||||
args.hf_repo = "kyutai/stt-1b-en_fr-candle"
|
|
||||||
else:
|
|
||||||
args.hf_repo = "kyutai/stt-1b-en_fr-mlx"
|
|
||||||
lm_config = hf_hub_download(args.hf_repo, "config.json")
|
lm_config = hf_hub_download(args.hf_repo, "config.json")
|
||||||
with open(lm_config, "r") as fobj:
|
with open(lm_config, "r") as fobj:
|
||||||
lm_config = json.load(fobj)
|
lm_config = json.load(fobj)
|
||||||
|
|
|
||||||
|
|
@ -128,9 +128,6 @@ def tokens_to_timestamped_text(
|
||||||
|
|
||||||
|
|
||||||
def main(args):
|
def main(args):
|
||||||
if args.vad and args.hf_repo is None:
|
|
||||||
args.hf_repo = "kyutai/stt-1b-en_fr-candle"
|
|
||||||
|
|
||||||
info = moshi.models.loaders.CheckpointInfo.from_hf_repo(
|
info = moshi.models.loaders.CheckpointInfo.from_hf_repo(
|
||||||
args.hf_repo,
|
args.hf_repo,
|
||||||
moshi_weights=args.moshi_weight,
|
moshi_weights=args.moshi_weight,
|
||||||
|
|
|
||||||
|
|
@ -25,17 +25,12 @@ from moshi_mlx import models, utils
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument("--max-steps", default=4096)
|
parser.add_argument("--max-steps", default=4096)
|
||||||
parser.add_argument("--hf-repo")
|
parser.add_argument("--hf-repo", default="kyutai/stt-1b-en_fr-mlx")
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--vad", action="store_true", help="Enable VAD (Voice Activity Detection)."
|
"--vad", action="store_true", help="Enable VAD (Voice Activity Detection)."
|
||||||
)
|
)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
if args.hf_repo is None:
|
|
||||||
if args.vad:
|
|
||||||
args.hf_repo = "kyutai/stt-1b-en_fr-candle"
|
|
||||||
else:
|
|
||||||
args.hf_repo = "kyutai/stt-1b-en_fr-mlx"
|
|
||||||
lm_config = hf_hub_download(args.hf_repo, "config.json")
|
lm_config = hf_hub_download(args.hf_repo, "config.json")
|
||||||
with open(lm_config, "r") as fobj:
|
with open(lm_config, "r") as fobj:
|
||||||
lm_config = json.load(fobj)
|
lm_config = json.load(fobj)
|
||||||
|
|
|
||||||
|
|
@ -76,9 +76,6 @@ def main():
|
||||||
moshi_weights = hf_get(moshi_name, args.hf_repo)
|
moshi_weights = hf_get(moshi_name, args.hf_repo)
|
||||||
tokenizer = hf_get(raw_config["tokenizer_name"], args.hf_repo)
|
tokenizer = hf_get(raw_config["tokenizer_name"], args.hf_repo)
|
||||||
lm_config = models.LmConfig.from_config_dict(raw_config)
|
lm_config = models.LmConfig.from_config_dict(raw_config)
|
||||||
# There is a bug in moshi_mlx <= 0.3.0 handling of the ring kv cache.
|
|
||||||
# The following line gets around it for now.
|
|
||||||
lm_config.transformer.max_seq_len = lm_config.transformer.context
|
|
||||||
model = models.Lm(lm_config)
|
model = models.Lm(lm_config)
|
||||||
model.set_dtype(mx.bfloat16)
|
model.set_dtype(mx.bfloat16)
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -205,9 +205,6 @@ def main():
|
||||||
moshi_weights = hf_get(moshi_name, args.hf_repo)
|
moshi_weights = hf_get(moshi_name, args.hf_repo)
|
||||||
tokenizer = hf_get(raw_config["tokenizer_name"], args.hf_repo)
|
tokenizer = hf_get(raw_config["tokenizer_name"], args.hf_repo)
|
||||||
lm_config = models.LmConfig.from_config_dict(raw_config)
|
lm_config = models.LmConfig.from_config_dict(raw_config)
|
||||||
# There is a bug in moshi_mlx <= 0.3.0 handling of the ring kv cache.
|
|
||||||
# The following line gets around it for now.
|
|
||||||
lm_config.transformer.max_seq_len = lm_config.transformer.context
|
|
||||||
model = models.Lm(lm_config)
|
model = models.Lm(lm_config)
|
||||||
model.set_dtype(mx.bfloat16)
|
model.set_dtype(mx.bfloat16)
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -78,7 +78,6 @@ def main():
|
||||||
condition_attributes = tts_model.make_condition_attributes(
|
condition_attributes = tts_model.make_condition_attributes(
|
||||||
[voice_path], cfg_coef=2.0
|
[voice_path], cfg_coef=2.0
|
||||||
)
|
)
|
||||||
_frames_cnt = 0
|
|
||||||
|
|
||||||
if args.out == "-":
|
if args.out == "-":
|
||||||
# Stream the audio to the speakers using sounddevice.
|
# Stream the audio to the speakers using sounddevice.
|
||||||
|
|
@ -87,12 +86,9 @@ def main():
|
||||||
pcms = queue.Queue()
|
pcms = queue.Queue()
|
||||||
|
|
||||||
def _on_frame(frame):
|
def _on_frame(frame):
|
||||||
nonlocal _frames_cnt
|
|
||||||
if (frame != -1).all():
|
if (frame != -1).all():
|
||||||
pcm = tts_model.mimi.decode(frame[:, 1:, :]).cpu().numpy()
|
pcm = tts_model.mimi.decode(frame[:, 1:, :]).cpu().numpy()
|
||||||
pcms.put_nowait(np.clip(pcm[0, 0], -1, 1))
|
pcms.put_nowait(np.clip(pcm[0, 0], -1, 1))
|
||||||
_frames_cnt += 1
|
|
||||||
print(f"generated {_frames_cnt / 12.5:.2f}s", end="\r", flush=True)
|
|
||||||
|
|
||||||
def audio_callback(outdata, _a, _b, _c):
|
def audio_callback(outdata, _a, _b, _c):
|
||||||
try:
|
try:
|
||||||
|
|
@ -117,16 +113,7 @@ def main():
|
||||||
break
|
break
|
||||||
time.sleep(1)
|
time.sleep(1)
|
||||||
else:
|
else:
|
||||||
|
result = tts_model.generate([entries], [condition_attributes])
|
||||||
def _on_frame(frame):
|
|
||||||
nonlocal _frames_cnt
|
|
||||||
if (frame != -1).all():
|
|
||||||
_frames_cnt += 1
|
|
||||||
print(f"generated {_frames_cnt / 12.5:.2f}s", end="\r", flush=True)
|
|
||||||
|
|
||||||
result = tts_model.generate(
|
|
||||||
[entries], [condition_attributes], on_frame=_on_frame
|
|
||||||
)
|
|
||||||
with tts_model.mimi.streaming(1), torch.no_grad():
|
with tts_model.mimi.streaming(1), torch.no_grad():
|
||||||
pcms = []
|
pcms = []
|
||||||
for frame in result.frames[tts_model.delay_steps :]:
|
for frame in result.frames[tts_model.delay_steps :]:
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue
Block a user