# /// script # requires-python = ">=3.12" # dependencies = [ # "huggingface_hub", # "moshi_mlx==0.2.10", # "numpy", # "sentencepiece", # "sounddevice", # "sphn", # ] # /// import argparse import json import mlx.core as mx import mlx.nn as nn import sentencepiece import sphn from huggingface_hub import hf_hub_download from moshi_mlx import models, utils if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("in_file", help="The file to transcribe.") parser.add_argument("--max-steps", default=4096) parser.add_argument("--hf-repo", default="kyutai/stt-1b-en_fr-mlx") parser.add_argument( "--vad", action="store_true", help="Enable VAD (Voice Activity Detection)." ) args = parser.parse_args() audio, _ = sphn.read(args.in_file, sample_rate=24000) lm_config = hf_hub_download(args.hf_repo, "config.json") with open(lm_config, "r") as fobj: lm_config = json.load(fobj) mimi_weights = hf_hub_download(args.hf_repo, lm_config["mimi_name"]) moshi_name = lm_config.get("moshi_name", "model.safetensors") moshi_weights = hf_hub_download(args.hf_repo, moshi_name) text_tokenizer = hf_hub_download(args.hf_repo, lm_config["tokenizer_name"]) lm_config = models.LmConfig.from_config_dict(lm_config) model = models.Lm(lm_config) model.set_dtype(mx.bfloat16) if moshi_weights.endswith(".q4.safetensors"): nn.quantize(model, bits=4, group_size=32) elif moshi_weights.endswith(".q8.safetensors"): nn.quantize(model, bits=8, group_size=64) print(f"loading model weights from {moshi_weights}") if args.hf_repo.endswith("-candle"): model.load_pytorch_weights(moshi_weights, lm_config, strict=True) else: model.load_weights(moshi_weights, strict=True) print(f"loading the text tokenizer from {text_tokenizer}") text_tokenizer = sentencepiece.SentencePieceProcessor(text_tokenizer) # type: ignore print(f"loading the audio tokenizer {mimi_weights}") audio_tokenizer = models.mimi.Mimi(models.mimi_202407(32)) audio_tokenizer.load_pytorch_weights(str(mimi_weights), strict=True) print("warming up the model") model.warmup() gen = models.LmGen( model=model, max_steps=args.max_steps, text_sampler=utils.Sampler(top_k=25, temp=0), audio_sampler=utils.Sampler(top_k=250, temp=0.8), check=False, ) print(f"starting inference {audio.shape}") audio = mx.concat([mx.array(audio), mx.zeros((1, 48000))], axis=-1) last_print_was_vad = False for start_idx in range(0, audio.shape[-1] // 1920 * 1920, 1920): block = audio[:, None, start_idx : start_idx + 1920] other_audio_tokens = audio_tokenizer.encode_step(block).transpose(0, 2, 1) if args.vad: text_token, vad_heads = gen.step_with_extra_heads(other_audio_tokens[0]) if vad_heads: pr_vad = vad_heads[2][0, 0, 0].item() if pr_vad > 0.5 and not last_print_was_vad: print(" [end of turn detected]") last_print_was_vad = True else: text_token = gen.step(other_audio_tokens[0]) text_token = text_token[0].item() audio_tokens = gen.last_audio_tokens() _text = None if text_token not in (0, 3): _text = text_tokenizer.id_to_piece(text_token) # type: ignore _text = _text.replace("▁", " ") print(_text, end="", flush=True) last_print_was_vad = False print()