{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "gJEMjPgeI-rw", "outputId": "7491c067-b1be-4505-b3f5-19ba4c00a593" }, "outputs": [], "source": [ "!pip install moshi" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "CA4K5iDFJcqJ", "outputId": "b609843a-a193-4729-b099-5f8780532333" }, "outputs": [], "source": [ "!wget https://github.com/kyutai-labs/moshi/raw/refs/heads/main/data/sample_fr_hibiki_crepes.mp3" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "VA3Haix3IZ8Q" }, "outputs": [], "source": [ "from dataclasses import dataclass\n", "import time\n", "import sentencepiece\n", "import sphn\n", "import textwrap\n", "import torch\n", "\n", "from moshi.models import loaders, MimiModel, LMModel, LMGen" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "9AK5zBMTI9bw" }, "outputs": [], "source": [ "@dataclass\n", "class InferenceState:\n", " mimi: MimiModel\n", " text_tokenizer: sentencepiece.SentencePieceProcessor\n", " lm_gen: LMGen\n", "\n", " def __init__(\n", " self,\n", " mimi: MimiModel,\n", " text_tokenizer: sentencepiece.SentencePieceProcessor,\n", " lm: LMModel,\n", " batch_size: int,\n", " device: str | torch.device,\n", " ):\n", " self.mimi = mimi\n", " self.text_tokenizer = text_tokenizer\n", " self.lm_gen = LMGen(lm, temp=0, temp_text=0, use_sampling=False)\n", " self.device = device\n", " self.frame_size = int(self.mimi.sample_rate / self.mimi.frame_rate)\n", " self.batch_size = batch_size\n", " self.mimi.streaming_forever(batch_size)\n", " self.lm_gen.streaming_forever(batch_size)\n", "\n", " def run(self, in_pcms: torch.Tensor):\n", " device = self.lm_gen.lm_model.device\n", " ntokens = 0\n", " first_frame = True\n", " chunks = [\n", " c\n", " for c in in_pcms.split(self.frame_size, dim=2)\n", " if c.shape[-1] == self.frame_size\n", " ]\n", " start_time = time.time()\n", " all_text = []\n", " for chunk in chunks:\n", " codes = self.mimi.encode(chunk)\n", " if first_frame:\n", " # Ensure that the first slice of codes is properly seen by the transformer\n", " # as otherwise the first slice is replaced by the initial tokens.\n", " tokens = self.lm_gen.step(codes)\n", " first_frame = False\n", " tokens = self.lm_gen.step(codes)\n", " if tokens is None:\n", " continue\n", " assert tokens.shape[1] == 1\n", " one_text = tokens[0, 0].cpu()\n", " if one_text.item() not in [0, 3]:\n", " text = self.text_tokenizer.id_to_piece(one_text.item())\n", " text = text.replace(\"▁\", \" \")\n", " all_text.append(text)\n", " ntokens += 1\n", " dt = time.time() - start_time\n", " print(\n", " f\"processed {ntokens} steps in {dt:.0f}s, {1000 * dt / ntokens:.2f}ms/step\"\n", " )\n", " return \"\".join(all_text)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 353, "referenced_widgets": [ "0a5f6f887e2b4cd1990a0e9ec0153ed9", "f7893826fcba4bdc87539589d669249b", "8805afb12c484781be85082ff02dad13", "97679c0d9ab44bed9a3456f2fcb541fd", "d73c0321bed54a52b5e1da0a7788e32a", "d67be13a920d4fc89e5570b5b29fc1d2", "6b377c2d7bf945fb89e46c39d246a332", "b82ff365c78e41ad8094b46daf79449d", "477aa7fa82dc42d5bce6f1743c45d626", "cbd288510c474430beb66f346f382c45", "aafc347cdf28428ea6a7abe5b46b726f", "fca09acd5d0d45468c8b04bfb2de7646", "79e35214b51b4a9e9b3f7144b0b34f7b", "89e9a37f69904bd48b954d627bff6687", "57028789c78248a7b0ad4f031c9545c9", "1150fcb427994c2984d4d0f4e4745fe5", "e24b1fc52f294f849019c9b3befb613f", "8724878682cf4c3ca992667c45009398", "36a22c977d5242008871310133b7d2af", "5b3683cad5cb4877b43fadd003edf97f", "703f98272e4d469d8f27f5a465715dd8", "9dbe02ef5fac41cfaee3d02946e65c88", "37faa87ad03a4271992c21ce6a629e18", "570c547e48cd421b814b2c5e028e4c0b", "b173768580fc4c0a8e3abf272e4c363a", "e57d1620f0a9427b85d8b4885ef4e8e3", "5dd4474df70743498b616608182714dd", "cc907676a65f4ad1bf68a77b4a00e89b", "a34abc3b118e4305951a466919c28ff6", "a77ccfcdb90146c7a63b4b2d232bc494", "f7313e6e3a27475993cab3961d6ae363", "39b47fad9c554839868fe9e4bbf7def2", "14e9511ea0bd44c49f0cf3abf1a6d40e", "a4ea8e0c4cac4d5e88b7e3f527e4fe90", "571afc0f4b2840c9830d6b5a307ed1f9", "6ec593cab5b64f0ea638bb175b9daa5c", "77a52aed00ae408bb24524880e19ec8a", "0b2de4b29b4b44fe9d96361a40c793d0", "3c5b5fb1a5ac468a89c1058bd90cfb58", "e53e0a2a240e43cfa562c89b3d703dea", "35966343cf9249ef8bc028a0d5c5f97d", "e36a37e0d41c47ccb8bc6d56c19fb17c", "279ccf7de43847a1a6579c9182a46cc8", "41b5d6ab0b7d43c790a55f125c0e7494" ] }, "id": "UsQJdAgkLp9n", "outputId": "9b7131c3-69c5-4323-8312-2ce7621d8869" }, "outputs": [], "source": [ "device = \"cuda\"\n", "# Use the en+fr low latency model, an alternative is kyutai/stt-2.6b-en\n", "checkpoint_info = loaders.CheckpointInfo.from_hf_repo(\"kyutai/stt-1b-en_fr\")\n", "mimi = checkpoint_info.get_mimi(device=device)\n", "text_tokenizer = checkpoint_info.get_text_tokenizer()\n", "lm = checkpoint_info.get_moshi(device=device)\n", "in_pcms, _ = sphn.read(\"sample_fr_hibiki_crepes.mp3\", sample_rate=mimi.sample_rate)\n", "in_pcms = torch.from_numpy(in_pcms).to(device=device)\n", "\n", "stt_config = checkpoint_info.stt_config\n", "pad_left = int(stt_config.get(\"audio_silence_prefix_seconds\", 0.0) * 24000)\n", "pad_right = int((stt_config.get(\"audio_delay_seconds\", 0.0) + 1.0) * 24000)\n", "in_pcms = torch.nn.functional.pad(in_pcms, (pad_left, pad_right), mode=\"constant\")\n", "in_pcms = in_pcms[None, 0:1].expand(1, -1, -1)\n", "\n", "state = InferenceState(mimi, text_tokenizer, lm, batch_size=1, device=device)\n", "text = state.run(in_pcms)\n", "print(textwrap.fill(text, width=100))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 75 }, "id": "CIAXs9oaPrtj", "outputId": "94cc208c-2454-4dd4-a64e-d79025144af5" }, "outputs": [], "source": [ "from IPython.display import Audio\n", "\n", "Audio(\"sample_fr_hibiki_crepes.mp3\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "qkUZ6CBKOdTa" }, "outputs": [], "source": [] } ], "metadata": { "accelerator": "GPU", "colab": { "gpuType": "L4", "provenance": [] }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "name": "python" } }, "nbformat": 4, "nbformat_minor": 0 }