kyutai/stt-rs/src/main.rs
Haixuan Xavier Tao 8a5ec4c228
Use inferred word as print instead of previous word
Currently the word that is printed at time t is the one from the previous iteration making it just one iteration slow. 

This should fix it although I'm not exactly sure why it used to be as is before.
2025-07-16 14:52:33 +02:00

242 lines
8.2 KiB
Rust

// Copyright (c) Kyutai, all rights reserved.
// This source code is licensed under the license found in the
// LICENSE file in the root directory of this source tree.
use anyhow::Result;
use candle::{Device, Tensor};
use clap::Parser;
#[derive(Debug, Parser)]
struct Args {
/// The audio input file, in wav/mp3/ogg/... format.
in_file: String,
/// The repo where to get the model from.
#[arg(long, default_value = "kyutai/stt-1b-en_fr-candle")]
hf_repo: String,
/// Run the model on cpu.
#[arg(long)]
cpu: bool,
/// Display word level timestamps.
#[arg(long)]
timestamps: bool,
/// Display the level of voice activity detection (VAD).
#[arg(long)]
vad: bool,
}
fn device(cpu: bool) -> Result<Device> {
if cpu {
Ok(Device::Cpu)
} else if candle::utils::cuda_is_available() {
Ok(Device::new_cuda(0)?)
} else if candle::utils::metal_is_available() {
Ok(Device::new_metal(0)?)
} else {
Ok(Device::Cpu)
}
}
#[derive(Debug, serde::Deserialize)]
struct SttConfig {
audio_silence_prefix_seconds: f64,
audio_delay_seconds: f64,
}
#[derive(Debug, serde::Deserialize)]
struct Config {
mimi_name: String,
tokenizer_name: String,
card: usize,
text_card: usize,
dim: usize,
n_q: usize,
context: usize,
max_period: f64,
num_heads: usize,
num_layers: usize,
causal: bool,
stt_config: SttConfig,
}
impl Config {
fn model_config(&self, vad: bool) -> moshi::lm::Config {
let lm_cfg = moshi::transformer::Config {
d_model: self.dim,
num_heads: self.num_heads,
num_layers: self.num_layers,
dim_feedforward: self.dim * 4,
causal: self.causal,
norm_first: true,
bias_ff: false,
bias_attn: false,
layer_scale: None,
context: self.context,
max_period: self.max_period as usize,
use_conv_block: false,
use_conv_bias: true,
cross_attention: None,
gating: Some(candle_nn::Activation::Silu),
norm: moshi::NormType::RmsNorm,
positional_embedding: moshi::transformer::PositionalEmbedding::Rope,
conv_layout: false,
conv_kernel_size: 3,
kv_repeat: 1,
max_seq_len: 4096 * 4,
shared_cross_attn: false,
};
let extra_heads = if vad {
Some(moshi::lm::ExtraHeadsConfig {
num_heads: 4,
dim: 6,
})
} else {
None
};
moshi::lm::Config {
transformer: lm_cfg,
depformer: None,
audio_vocab_size: self.card + 1,
text_in_vocab_size: self.text_card + 1,
text_out_vocab_size: self.text_card,
audio_codebooks: self.n_q,
conditioners: Default::default(),
extra_heads,
}
}
}
struct Model {
state: moshi::asr::State,
text_tokenizer: sentencepiece::SentencePieceProcessor,
timestamps: bool,
vad: bool,
config: Config,
dev: Device,
}
impl Model {
fn load_from_hf(args: &Args, dev: &Device) -> Result<Self> {
let dtype = dev.bf16_default_to_f32();
// Retrieve the model files from the Hugging Face Hub
let api = hf_hub::api::sync::Api::new()?;
let repo = api.model(args.hf_repo.to_string());
let config_file = repo.get("config.json")?;
let config: Config = serde_json::from_str(&std::fs::read_to_string(&config_file)?)?;
let tokenizer_file = repo.get(&config.tokenizer_name)?;
let model_file = repo.get("model.safetensors")?;
let mimi_file = repo.get(&config.mimi_name)?;
let text_tokenizer = sentencepiece::SentencePieceProcessor::open(&tokenizer_file)?;
let vb_lm =
unsafe { candle_nn::VarBuilder::from_mmaped_safetensors(&[&model_file], dtype, dev)? };
let audio_tokenizer = moshi::mimi::load(mimi_file.to_str().unwrap(), Some(32), dev)?;
let lm = moshi::lm::LmModel::new(
&config.model_config(args.vad),
moshi::nn::MaybeQuantizedVarBuilder::Real(vb_lm),
)?;
let asr_delay_in_tokens = (config.stt_config.audio_delay_seconds * 12.5) as usize;
let state = moshi::asr::State::new(1, asr_delay_in_tokens, 0., audio_tokenizer, lm)?;
Ok(Model {
state,
config,
text_tokenizer,
timestamps: args.timestamps,
vad: args.vad,
dev: dev.clone(),
})
}
fn run(&mut self, mut pcm: Vec<f32>) -> Result<()> {
use std::io::Write;
// Add the silence prefix to the audio.
if self.config.stt_config.audio_silence_prefix_seconds > 0.0 {
let silence_len =
(self.config.stt_config.audio_silence_prefix_seconds * 24000.0) as usize;
pcm.splice(0..0, vec![0.0; silence_len]);
}
// Add some silence at the end to ensure all the audio is processed.
let suffix = (self.config.stt_config.audio_delay_seconds * 24000.0) as usize;
pcm.resize(pcm.len() + suffix + 24000, 0.0);
let mut last_word = None;
let mut printed_eot = false;
for pcm in pcm.chunks(1920) {
let pcm = Tensor::new(pcm, &self.dev)?.reshape((1, 1, ()))?;
let asr_msgs = self.state.step_pcm(pcm, None, &().into(), |_, _, _| ())?;
for asr_msg in asr_msgs.iter() {
match asr_msg {
moshi::asr::AsrMsg::Step { prs, .. } => {
// prs is the probability of having no voice activity for different time
// horizons.
// In kyutai/stt-1b-en_fr-candle, these horizons are 0.5s, 1s, 2s, and 3s.
if self.vad && prs[2][0] > 0.5 && !printed_eot {
printed_eot = true;
if !self.timestamps {
print!(" <endofturn pr={}>", prs[2][0]);
} else {
println!("<endofturn pr={}>", prs[2][0]);
}
}
}
moshi::asr::AsrMsg::EndWord { stop_time, .. } => {
printed_eot = false;
if self.timestamps {
if let Some((word, start_time)) = last_word.take() {
println!("[{start_time:5.2}-{stop_time:5.2}] {word}");
}
}
}
moshi::asr::AsrMsg::Word {
tokens, start_time, ..
} => {
printed_eot = false;
let word = self
.text_tokenizer
.decode_piece_ids(tokens)
.unwrap_or_else(|_| String::new());
if !self.timestamps {
print!(" {word}");
std::io::stdout().flush()?
} else {
last_word = Some((word, *start_time));
if let Some((word, prev_start_time)) = last_word.take() {
println!("[{prev_start_time:5.2}-{start_time:5.2}] {word}");
}
}
}
}
}
}
if let Some((word, start_time)) = last_word.take() {
println!("[{start_time:5.2}- ] {word}");
}
println!();
Ok(())
}
}
fn main() -> Result<()> {
let args = Args::parse();
let device = device(args.cpu)?;
println!("Using device: {:?}", device);
println!("Loading audio file from: {}", args.in_file);
let (pcm, sample_rate) = kaudio::pcm_decode(&args.in_file)?;
let pcm = if sample_rate != 24_000 {
kaudio::resample(&pcm, sample_rate as usize, 24_000)?
} else {
pcm
};
println!("Loading model from repository: {}", args.hf_repo);
let mut model = Model::load_from_hf(&args, &device)?;
println!("Running inference");
model.run(pcm)?;
Ok(())
}