396 lines
12 KiB
Python
396 lines
12 KiB
Python
# /// script
|
|
# requires-python = ">=3.12"
|
|
# dependencies = [
|
|
# "datasets",
|
|
# "jiwer==3.1.0",
|
|
# "julius",
|
|
# "librosa",
|
|
# "moshi",
|
|
# "openai-whisper",
|
|
# "soundfile",
|
|
# ]
|
|
# ///
|
|
"""
|
|
Example implementation of the streaming STT example. Here we group
|
|
test utterances in batches (pre- and post-padded with silence) and
|
|
and then feed these batches into the streaming STT model frame-by-frame.
|
|
|
|
Example command:
|
|
```
|
|
uv run scripts/streaming_stt.py \
|
|
--dataset meanwhile \
|
|
--hf-repo kyutai/stt-2.6b-en
|
|
```
|
|
|
|
"""
|
|
|
|
# The outputs I get on my H100 using this code with the 2.6B model,
|
|
# bsz 32:
|
|
|
|
# LibriVox === cer: 4.09% wer: 7.33% corpus_wer: 6.78% RTF = 52.72
|
|
# Ami === cer: 15.99% wer: 18.78% corpus_wer: 12.20% RTF = 28.37
|
|
# LibriSpeech other === cer: 2.31% wer: 5.24% corpus_wer: 4.33% RTF = 44.76
|
|
# LibriSpeech clean === cer: 0.67% wer: 1.95% corpus_wer: 1.69% RTF = 68.19
|
|
# Tedlium (short) === cer: 2.15% wer: 3.65% corpus_wer: 3.33% RTF = 67.44
|
|
# spgispeech === cer: 0.99% wer: 2.00% corpus_wer: 2.03% RTF = 78.64
|
|
# gigaspeech === cer: 6.80% wer: 11.31% corpus_wer: 9.81% RTF = 64.04
|
|
# earnings22 (short) === cer: 12.63% wer: 15.70% corpus_wer: 11.02% RTF = 50.13
|
|
|
|
# Meanwhile === cer: 2.02% wer: 5.50% corpus_wer: 5.60% RTF = 69.19
|
|
# Tedlium (long) == cer: 1.53% wer: 2.56% corpus_wer: 2.97% RTF = 33.92
|
|
# Rev16 === cer: 6.57% wer: 10.08% corpus_wer: 11.43% RTF = 40.34
|
|
# Earnings21 === cer: 5.73% wer: 9.84% corpus_wer: 10.38% RTF = 73.15
|
|
|
|
import argparse
|
|
import dataclasses
|
|
import time
|
|
|
|
import jiwer
|
|
import julius
|
|
import moshi.models
|
|
import torch
|
|
import tqdm
|
|
from datasets import Dataset, load_dataset
|
|
from whisper.normalizers import EnglishTextNormalizer
|
|
|
|
_NORMALIZER = EnglishTextNormalizer()
|
|
|
|
|
|
def get_text(sample):
|
|
possible_keys = [
|
|
"text",
|
|
"sentence",
|
|
"normalized_text",
|
|
"transcript",
|
|
"transcription",
|
|
]
|
|
for key in possible_keys:
|
|
if key in sample:
|
|
return sample[key]
|
|
raise ValueError(
|
|
f"Expected transcript column of either {possible_keys}."
|
|
f"Got sample with keys: {', '.join(sample.keys())}. Ensure a text column name is present in the dataset."
|
|
)
|
|
|
|
|
|
# The two functions below are adapted from https://github.com/huggingface/open_asr_leaderboard/blob/main/normalizer/data_utils.py
|
|
|
|
|
|
def normalize(batch):
|
|
batch["original_text"] = get_text(batch)
|
|
batch["norm_text"] = _NORMALIZER(batch["original_text"])
|
|
return batch
|
|
|
|
|
|
def is_target_text_in_range(ref):
|
|
if ref.strip() == "ignore time segment in scoring":
|
|
return False
|
|
else:
|
|
return ref.strip() != ""
|
|
|
|
|
|
# End of the adapted part
|
|
|
|
|
|
class AsrMetrics:
|
|
def __init__(self):
|
|
self.cer_sum = 0.0
|
|
self.wer_sum = 0.0
|
|
self.errors_sum = 0.0
|
|
self.total_words_sum = 0.0
|
|
self.num_sequences = 0.0
|
|
|
|
def update(self, hyp: str, ref: str) -> None:
|
|
normalized_ref = _NORMALIZER(ref)
|
|
normalized_hyp = _NORMALIZER(hyp)
|
|
|
|
this_wer = jiwer.wer(normalized_ref, normalized_hyp)
|
|
this_cer = jiwer.cer(normalized_ref, normalized_hyp)
|
|
measures = jiwer.compute_measures(normalized_ref, normalized_hyp)
|
|
|
|
self.wer_sum += this_wer
|
|
self.cer_sum += this_cer
|
|
self.errors_sum += (
|
|
measures["substitutions"] + measures["deletions"] + measures["insertions"]
|
|
)
|
|
self.total_words_sum += (
|
|
measures["substitutions"] + measures["deletions"] + measures["hits"]
|
|
)
|
|
self.num_sequences += 1
|
|
|
|
def compute(self) -> dict:
|
|
assert self.num_sequences > 0, (
|
|
"Unable to compute with total number of comparisons <= 0"
|
|
) # type: ignore
|
|
return {
|
|
"cer": (self.cer_sum / self.num_sequences),
|
|
"wer": (self.wer_sum / self.num_sequences),
|
|
"corpus_wer": (self.errors_sum / self.total_words_sum),
|
|
}
|
|
|
|
def __str__(self) -> str:
|
|
result = self.compute()
|
|
return " ".join(f"{k}: {100 * v:.2f}%" for k, v in result.items())
|
|
|
|
|
|
class Timer:
|
|
def __init__(self):
|
|
self.total = 0
|
|
self._start_time = None
|
|
|
|
def __enter__(self):
|
|
self._start_time = time.perf_counter()
|
|
return self
|
|
|
|
def __exit__(self, *_):
|
|
self.total += time.perf_counter() - self._start_time
|
|
self._start_time = None
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class _DatasetInfo:
|
|
alias: str
|
|
|
|
name: str
|
|
config: str
|
|
split: str = "test"
|
|
|
|
|
|
_DATASETS = [
|
|
# Long-form datasets from distil-whisper
|
|
_DatasetInfo("rev16", "distil-whisper/rev16", "whisper_subset"),
|
|
_DatasetInfo("earnings21", "distil-whisper/earnings21", "full"),
|
|
_DatasetInfo("earnings22", "distil-whisper/earnings22", "full"),
|
|
_DatasetInfo("tedlium", "distil-whisper/tedlium-long-form", None),
|
|
_DatasetInfo("meanwhile", "distil-whisper/meanwhile", None),
|
|
# Short-form datasets from OpenASR leaderboard
|
|
_DatasetInfo("ami", "hf-audio/esb-datasets-test-only-sorted", "ami"),
|
|
_DatasetInfo(
|
|
"librispeech.clean",
|
|
"hf-audio/esb-datasets-test-only-sorted",
|
|
"librispeech",
|
|
split="test.clean",
|
|
),
|
|
_DatasetInfo(
|
|
"librispeech.other",
|
|
"hf-audio/esb-datasets-test-only-sorted",
|
|
"librispeech",
|
|
split="test.other",
|
|
),
|
|
_DatasetInfo("voxpopuli", "hf-audio/esb-datasets-test-only-sorted", "voxpopuli"),
|
|
_DatasetInfo("spgispeech", "hf-audio/esb-datasets-test-only-sorted", "spgispeech"),
|
|
_DatasetInfo("gigaspeech", "hf-audio/esb-datasets-test-only-sorted", "gigaspeech"),
|
|
_DatasetInfo("tedlium-short", "hf-audio/esb-datasets-test-only-sorted", "tedlium"),
|
|
_DatasetInfo(
|
|
"earnings22-short", "hf-audio/esb-datasets-test-only-sorted", "earnings22"
|
|
),
|
|
]
|
|
DATASET_MAP = {dataset.alias: dataset for dataset in _DATASETS}
|
|
|
|
|
|
def get_dataset(args) -> Dataset:
|
|
if args.dataset not in DATASET_MAP:
|
|
raise RuntimeError(f"Unknown dataset: {args.dataset}")
|
|
|
|
info = DATASET_MAP[args.dataset]
|
|
|
|
dataset = load_dataset(
|
|
info.name,
|
|
info.config,
|
|
split=info.split,
|
|
cache_dir=args.hf_cache_dir,
|
|
streaming=False,
|
|
token=True,
|
|
)
|
|
dataset = dataset.map(normalize)
|
|
dataset = dataset.filter(is_target_text_in_range, input_columns=["norm_text"])
|
|
|
|
return dataset
|
|
|
|
|
|
@torch.no_grad
|
|
def get_padded_batch(
|
|
audios: list[tuple[torch.Tensor, int]],
|
|
before_padding: float,
|
|
after_padding: float,
|
|
audio_encoder,
|
|
):
|
|
sample_rate = audio_encoder.sample_rate
|
|
|
|
max_len = 0
|
|
batch = []
|
|
durations = []
|
|
for audio, sr in audios:
|
|
durations.append(audio.shape[-1] / sr)
|
|
audio = julius.resample_frac(audio, int(sr), int(sample_rate))
|
|
audio = torch.nn.functional.pad(
|
|
audio, (int(before_padding * sample_rate), int(after_padding * sample_rate))
|
|
)
|
|
max_len = max(max_len, audio.shape[-1])
|
|
batch.append(audio)
|
|
|
|
target = max_len
|
|
if target % audio_encoder.frame_size != 0:
|
|
target = target + (
|
|
audio_encoder.frame_size - max_len % audio_encoder.frame_size
|
|
)
|
|
padded_batch = torch.stack(
|
|
[
|
|
torch.nn.functional.pad(audio, (0, target - audio.shape[-1]))
|
|
for audio in batch
|
|
]
|
|
)
|
|
return padded_batch
|
|
|
|
|
|
@torch.no_grad
|
|
def streaming_transcribe(
|
|
padded_batch: torch.Tensor,
|
|
mimi,
|
|
lm_gen,
|
|
):
|
|
bsz = padded_batch.shape[0]
|
|
|
|
text_tokens_acc = []
|
|
|
|
with mimi.streaming(bsz), lm_gen.streaming(bsz):
|
|
for offset in range(0, padded_batch.shape[-1], mimi.frame_size):
|
|
audio_chunk = padded_batch[:, offset : offset + mimi.frame_size]
|
|
audio_chunk = audio_chunk[:, None, :]
|
|
|
|
audio_tokens = mimi.encode(audio_chunk)
|
|
text_tokens = lm_gen.step(audio_tokens)
|
|
if text_tokens is not None:
|
|
text_tokens_acc.append(text_tokens)
|
|
|
|
return torch.concat(text_tokens_acc, axis=-1)
|
|
|
|
|
|
def run_inference(
|
|
dataset,
|
|
mimi,
|
|
lm_gen,
|
|
tokenizer,
|
|
padding_token_id,
|
|
before_padding_sec,
|
|
after_padding_sec,
|
|
):
|
|
metrics = AsrMetrics()
|
|
audio_time = 0.0
|
|
inference_timer = Timer()
|
|
|
|
for batch in tqdm.tqdm(dataset.iter(args.batch_size)):
|
|
audio_data = list(
|
|
zip(
|
|
[torch.tensor(x["array"]).float() for x in batch["audio"]],
|
|
[x["sampling_rate"] for x in batch["audio"]],
|
|
)
|
|
)
|
|
|
|
audio_time += sum(audio.shape[-1] / sr for (audio, sr) in audio_data)
|
|
|
|
gt_transcripts = batch["original_text"]
|
|
|
|
padded_batch = get_padded_batch(
|
|
audio_data,
|
|
before_padding=before_padding_sec,
|
|
after_padding=after_padding_sec,
|
|
audio_encoder=mimi,
|
|
)
|
|
padded_batch = padded_batch.cuda()
|
|
|
|
with inference_timer:
|
|
text_tokens = streaming_transcribe(
|
|
padded_batch,
|
|
mimi=mimi,
|
|
lm_gen=lm_gen,
|
|
)
|
|
|
|
for batch_index in range(text_tokens.shape[0]):
|
|
utterance_tokens = text_tokens[batch_index, ...]
|
|
utterance_tokens = utterance_tokens[utterance_tokens > padding_token_id]
|
|
text = tokenizer.decode(utterance_tokens.cpu().numpy().tolist())
|
|
metrics.update(hyp=text, ref=gt_transcripts[batch_index])
|
|
|
|
return metrics, inference_timer.total, audio_time
|
|
|
|
|
|
def main(args):
|
|
torch.set_float32_matmul_precision("high")
|
|
|
|
info = moshi.models.loaders.CheckpointInfo.from_hf_repo(
|
|
args.hf_repo,
|
|
moshi_weights=args.moshi_weight,
|
|
mimi_weights=args.mimi_weight,
|
|
tokenizer=args.tokenizer,
|
|
config_path=args.config_path,
|
|
)
|
|
|
|
mimi = info.get_mimi(device=args.device)
|
|
tokenizer = info.get_text_tokenizer()
|
|
lm = info.get_moshi(
|
|
device=args.device,
|
|
dtype=torch.bfloat16,
|
|
)
|
|
lm_gen = moshi.models.LMGen(lm, temp=0, temp_text=0.0)
|
|
dataset = get_dataset(args)
|
|
|
|
padding_token_id = info.raw_config.get("text_padding_token_id", 3)
|
|
# Putting in some conservative defaults
|
|
audio_silence_prefix_seconds = info.stt_config.get(
|
|
"audio_silence_prefix_seconds", 1.0
|
|
)
|
|
audio_delay_seconds = info.stt_config.get("audio_delay_seconds", 5.0)
|
|
|
|
wer_metric, inference_time, audio_time = run_inference(
|
|
dataset,
|
|
mimi,
|
|
lm_gen,
|
|
tokenizer,
|
|
padding_token_id,
|
|
audio_silence_prefix_seconds,
|
|
audio_delay_seconds + 0.5,
|
|
)
|
|
|
|
print(wer_metric, f"RTF = {audio_time / inference_time:.2f}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Example streaming STT inference.")
|
|
parser.add_argument(
|
|
"--dataset",
|
|
required=True,
|
|
choices=DATASET_MAP.keys(),
|
|
help="Dataset to run inference on.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--hf-repo", type=str, help="HF repo to load the STT model from. "
|
|
)
|
|
parser.add_argument("--tokenizer", type=str, help="Path to a local tokenizer file.")
|
|
parser.add_argument(
|
|
"--moshi-weight", type=str, help="Path to a local checkpoint file."
|
|
)
|
|
parser.add_argument(
|
|
"--mimi-weight", type=str, help="Path to a local checkpoint file for Mimi."
|
|
)
|
|
parser.add_argument(
|
|
"--config-path", type=str, help="Path to a local config file.", default=None
|
|
)
|
|
parser.add_argument(
|
|
"--batch-size",
|
|
type=int,
|
|
help="Batch size.",
|
|
default=32,
|
|
)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cuda",
|
|
help="Device on which to run, defaults to 'cuda'.",
|
|
)
|
|
parser.add_argument("--hf-cache-dir", type=str, help="HuggingFace cache folder.")
|
|
args = parser.parse_args()
|
|
|
|
main(args)
|